【題目】為深化義務(wù)教育課程改革,滿足學生的個性化學習需求,某校就“學生對知識拓展,體育特長、藝術(shù)特長和實踐活動四類選課意向”進行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題:
(1)扇形統(tǒng)計圖中m的值為 , n的值為
(2)補全條形統(tǒng)計圖;
(3)在選擇B類的學生中,甲、乙、丙三人在乒乓球項目表現(xiàn)突出,現(xiàn)決定從這三名同學中任選兩名參加市里組織的乒乓球比賽,選中甲同學的概率是

【答案】
(1)20;25
(2)解:


(3)
【解析】解:(1)本次調(diào)查的總?cè)藬?shù)為24÷ =60(人), ∴A類別人數(shù)為:60﹣(24+15+9)=12,
則m%= ×100%=20%,n%= ×100%=25%,
所以答案是:20,25;(2)補全圖形如下:
;(3)解:畫樹狀圖得:

∵共有6種等可能的結(jié)果,甲被選中的有4種情況,
∴甲被選中的概率為: = ,
所以答案是:
【考點精析】本題主要考查了扇形統(tǒng)計圖和條形統(tǒng)計圖的相關(guān)知識點,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個動點,連接AD,過點C作CE⊥AD于E,連接BE,在點D變化的過程中,線段BE的最小值是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點O出發(fā),向點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以 個單位/秒的速度勻速運動,連接PQ,設(shè)運動時間為t秒.

(1)求拋物線的解析式;
(2)問:當t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標;
(4)設(shè)拋物線頂點為M,連接BP,BM,MQ,問:是否存在t的值,使以B,Q,M為頂點的三角形與以O(shè),B,P為頂點的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABO中,AB⊥OB,OB= ,AB=1,把△ABO繞點O旋轉(zhuǎn)150°后得到△A1B1O,則點A1坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,tanA= ,點D是邊AC上一點,連接BD,并將△BCD沿BD折疊,使點C恰好落在邊AB上的點E處,過點D作DF⊥BD,交AB于點F.

(1)求證:∠ADF=∠EDF;
(2)探究線段AD,AF,AB之間的數(shù)量關(guān)系,并說明理由;
(3)若EF=1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤=售價﹣制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋轉(zhuǎn)得到的.

(1)請寫出旋轉(zhuǎn)中心的坐標是 , 旋轉(zhuǎn)角是度;
(2)以(1)中的旋轉(zhuǎn)中心為中心,分別畫出△A1AC1順時針旋轉(zhuǎn)90°、180°的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE= AB,連接DE.將△ADE繞點A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.

(1)問題發(fā)現(xiàn)
①當θ=0°時, =
②當θ=180°時, =
(2)拓展探究
試判斷:當0°≤θ<360°時, 的大小有無變化?請僅就圖2的情形給出證明;

(3)問題解決
①在旋轉(zhuǎn)過程中,BE的最大值為;
②當△ADE旋轉(zhuǎn)至B、D、E三點共線時,線段CD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)圖回答問題:
(1)如圖1,
紙片ABCD中,AD=5,SABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D,則四邊形AEE′D的形狀為
A.平行四邊形
B.菱形
C.矩形
D.正方形
(2)如圖2,
在(1)中的四邊形紙片AEE′D中,在EE′上取一點F,使EF=4,剪下△AEF,將它平移至△DE′F′的位置,拼成四邊形AFF′D.
①求證:四邊形AFF′D是菱形.
②求四邊形AFF′D的兩條對角線的長.

查看答案和解析>>

同步練習冊答案