【題目】如圖,在平面直角坐標系中,已知矩形OABC的頂點A在x軸上,OA=4,OC=3,點D為BC邊上一點,以AD為一邊在與點B的同側作正方形ADEF,連接OE。當點D在邊BC上運動時,OE的長度的最小值是________
【答案】5
【解析】
過點D作DG⊥OA,過點E作HE⊥DG.先證明△HED≌△GDA,從而得到HE=DG=3,HD=AG.設D(a,3),則DC=a,DH=AG=4-a,則E(a+3,7-a),依據(jù)兩點間的距離公式可得到OE=,最后利用配方法求得被開方數(shù)的最小值即可.
如圖所示:過點D作DG⊥OA,過點E作HE⊥DG.
∵DG⊥OA,HE⊥DG,
∴∠EHD=∠DGA=90°.
∴∠GDA+∠DAG=90°.
∵四邊形ADEF為正方形,
∴DE=AD,∠HDE+∠GDA=90°.
∴∠HDE=∠GAD.
在△HED和△GDA中
,
∴△HED≌△GDA.
∴HE=DG=3,HD=AG.
設D(a,3),則DC=a,DH=AG=4-a.
∴E(a+3,7-a).
∴OE==.
當a=2時,OE有最小值,最小值為5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和
其中正確結論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在拋物線y=x2﹣2x+2上運動,過點A作AC上x軸于點C,以AC為對角線作矩形ABCD,連結BD,則BD的最小值為( 。
A. B. 1 C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料,解答問題:
(1)中國古代數(shù)學著作《周髀算經(jīng)》有著這樣的記載:“勾廣三,股修四,經(jīng)隅五.”這句話的意思是:“如果直角三角形兩直角邊為3和4時,那么斜邊的長為5.”上述記載說明:在中,如果,,,,那么三者之間的數(shù)量關系是: .
(2)對于(1)中這個數(shù)量關系,我們給出下面的證明.如圖①,它是由四個全等的直角三角形圍成的一個大正方形,中空的部分是一個小正方形.結合圖①,將下面的證明過程補充完整:
∵,
(用含的式子表示)
又∵ .
∴
∴
∴ .
(3)如圖②,把矩形折疊,使點與點重合,點落在點處,折痕為.如果,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在矩形ABCD中,AC、BD相交于點O,OE⊥BC于E,連接DE交OC于點F,作FG⊥BC于G.
(1)說明點G是線段BC的一個三等分點;
(2)請你依照上面的畫法,在原圖上畫出BC的一個四等分點(保留作圖痕跡,不必證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于某一個函數(shù),自變量x在規(guī)定的范圍內(nèi),若任意取兩個值x1和x2,它們的對應函數(shù)值分別為y1和y2. 若x2>x1時,有y2>y1,則稱該函數(shù)單調(diào)遞增;若x2>x1時,有y2<y1,則稱該函數(shù)單調(diào)遞減.例如二次函數(shù)y=x2,在x≥0時,該函數(shù)單調(diào)遞增;在x≤0時,該函數(shù)單調(diào)遞減.
(1)二次函數(shù):y=(x+1)2+2自變量x在哪個范圍內(nèi),該函數(shù)單調(diào)遞減?
(2)證明:函數(shù):y=x﹣在x>1的函數(shù)范圍內(nèi),該函數(shù)單調(diào)遞增.
(3)若存在兩個關于x的一次函數(shù),分別記為:g=k1x+b1和h=k2x+b2,且函數(shù)g在實數(shù)范圍內(nèi)單調(diào)遞增,函數(shù)h在實數(shù)范圍內(nèi)單調(diào)遞減.記第三個一次函數(shù)y=g+h,則比例系數(shù)k1和k2滿足何種條件時,函數(shù)y在實數(shù)范圍內(nèi)單調(diào)遞增?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,兩個小圓的半徑分別是2厘米和3厘米,最外側大圓的面積是半徑為2厘米的小圓面積的幾倍?陰影部分的面積是半徑為3厘米的圓的面積的多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點D、E,過劣弧DE(不包括端點D,E)上任一點P作⊙O的切線MN與AB,BC分別交于點M,N,若⊙O的半徑為4cm,則Rt△MBN的周長為________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.
①若設購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?
②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com