【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點D、E,過劣弧DE(不包括端點D,E)上任一點P⊙O的切線MNAB,BC分別交于點M,N,若⊙O的半徑為4cm,則Rt△MBN的周長為________cm.

【答案】8

【解析】

連接OD、OE,由切線性質(zhì)易得四邊形ODBE為正方形.由切線長定理可知MD=MP,NP=NE,Rt△MBN的周長等于BD+BE.

連接OD、OE,

由切線性質(zhì)可知OD⊥AB、OE⊥BC,再結合∠B=90°OD=OE可知四邊形ODBE為正方形,BD=BE=OE=4cm.由切線長定理可知MD=MP,NP=NE,則:

Rt△MBN的周長=BM+MN+BN=BM+MD+BN+NE=BD+BE=4+4=8cm,

故答案為:4cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是

A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一均勻硬幣10次都可能正面朝上

C. 大量反復拋一均勻硬幣,平均100次出現(xiàn)正面朝上50

D. 通過拋一均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形OABC的頂點A在x軸上,OA=4,OC=3,點D為BC邊上一點,以AD為一邊在與點B的同側(cè)作正方形ADEF,連接OE。當點D在邊BC上運動時,OE的長度的最小值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,點開始沿折線的速度運動,點開始沿邊以的速度移動,如果點、分別從、同時出發(fā),當其中一點到達時,另一點也隨之停止運動,設運動時間為,當________時,四邊形也為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按480元銷售時,每天可銷售160個;若銷售單價每降低1元,每天可多售出2個。已知每個玩具的固定成本為360.設每個玩具降價x元,請解決下列問題:

(1)降價后該玩具的日銷售量為多少個,每個玩具盈利多少元;(用含x的代數(shù)式表示

(2)若上述條件不變,每個玩具降價多少元時,廠家每天可獲利潤20000?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分)如圖,已知BC⊙O的直徑,AC⊙O于點C,AB⊙O于點D,EAC的中點,連結DE

1)若AD=DB,OC=5,求切線AC的長.

2)求證:ED⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+cy軸交于點C,與x軸交于A、B兩點(點A在原點左側(cè),點B在原點右側(cè)),且∠ACB=90°,tanBAC=

①求拋物線的解析式;

②若拋物線頂點為P,求四邊形APCB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,的中點,連接并延長交的延長線于點,PAD的中點.

(1)求證:四邊形ABFC是平行四邊形;

(2)滿足什么數(shù)量關系時,四邊形AECP是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】釣魚島是我國的神圣領土,中國人民維護國家領土完整的決心是堅定的,多年來,我國的海監(jiān)、漁政等執(zhí)法船定期開赴釣魚島巡視.某日,我海監(jiān)船(A處)測得釣魚島(B處)距離為20海里,海監(jiān)船繼續(xù)向東航行,在C處測得釣魚島在北偏東45°的方向上,距離為10海里,求AC的距離.(結果保留根號)

查看答案和解析>>

同步練習冊答案