【題目】如圖,的直徑,點右側半圓上的一個動點,點左側半圓的中點,的切線,切點為,連接于點.點為射線上一動點,連接,

1)當時, 求證:

2)若的半徑為,請?zhí)羁眨?/span>

當四邊形為正方形時,

時, 四邊形為菱形.

【答案】1)證明見解析;(2①2;②22.5°

【解析】

1)由切線性質和垂徑定理可證明,從而可得四邊形是平行四邊形,利用平行四邊形性質即可證明結論;

2)①根據(jù)正方形性質得到P點與O點重合即可得到答案;

②由點的中點,可得,由菱形性質易求,進而可求

解(1)證明:連接,


的中點,的半徑,

,

的切線,

,

,

,

四邊形是平行四邊形,

,

,

,

2當四邊形為正方形時, BP=DQDP⊥AB,即P點與O點重合,

∴DQ=BP=BO,

,

故答案為:2;

如圖,連接BD,

左側半圓的中點,

,,

在菱形中,,,

,

,

,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,是直徑,是切線,點為切點.

1)求證:;

2)如圖,連接交于點,連接并延長,交于點,求證:;

3)如圖,延長交于點連接過點,交的延長線于點.若 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+cx軸交于A、B兩點,與y軸交于點C,點B坐標為(4,0),點C坐標為(0,4),點D是拋物線的頂點,過點Dx軸的垂線,垂足為E,連接BD

1)求拋物線的表達式及對稱軸;

2)點F是拋物線上的動點,當∠FBA2BDE時,求點F的坐標;

3)若點Px軸上方拋物線上的動點,以PB為邊作正方形PBGH,隨著點P的運動,正方形的大小、位置也隨著改變,當頂點GH恰好落在y軸上時,請直接寫出點P的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某漁船在海面上朝正東方向勻速航行,在A處觀測到燈塔M在北偏東60°方向上,且AM =海里,那么該船繼續(xù)航行______海里可使?jié)O船到達離燈塔距離最近的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司招聘人才,對應聘者分別進行閱讀能力、思維能力和表達能力三項測試,其中甲、乙兩人的成績如下表(單位:分):

項目人員

閱讀能力

思維能力

表達能力

93

86

73

95

81

79

1)根據(jù)實際需要,公司將閱讀、思維和表達能力三項測試得分按352的比確定每人的最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?

2)公司按照(1)中的成績計算方法,將每位應聘者的最后成績繪制成如圖所示的頻數(shù)分布直方圖(每組分數(shù)段均包含左端數(shù)值,不包含右端數(shù)值,如最右邊一組分數(shù)x為:85≤x90),并決定由高分到低分錄用8名員工,甲、乙兩人能否被錄用?請說明理由,并求出本次招聘人才的錄用率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,∠C=90°,AC=BC,點OAB上,以O為圓心,OA為半徑作⊙O,與BC相切于點D,且交AB于點E

1)連結AD,求證:AD平分∠CAB;

2)若BE=1,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新學期開始時,某校九年級一班的同學為了增添教室綠色文化,打造溫馨舒適的學習環(huán)境,準備到一家植物種植基地購買A、B兩種花苗.據(jù)了解,購買A種花苗3盆,B種花苗5盆,則需210元;購買A種花苗4盆,B種花苗10盆,則需380元.

1)求A、B兩種花苗的單價分別是多少元?

2)經(jīng)九年級一班班委會商定,決定購買A、B兩種花苗共12盆進行搭配裝扮教室.種植基地銷售人員為了支持本次活動,為該班同學提供以下優(yōu)惠:購買幾盆B種花苗,B種花苗每盆就降價幾元,請你為九年級一班的同學預算一下,本次購買至少準備多少錢?最多準備多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近日,在公安部交通管理局部署下,全國各地交警都在大力開展|一盔一帶安全守護行動,為了解市民對騎電動車戴頭盔的贊同情況,某課題小組隨機調查了部分市民,并根據(jù)調查結果繪制了尚不完整的統(tǒng)計圖.

根據(jù)以上統(tǒng)計圖回答一下問題:

1)這次調查的市民共_______人;

2)若選擇的人數(shù)是選擇的人數(shù)的3倍,則扇形統(tǒng)計圖中,扇形的圓心角度數(shù)是______

3)補全條形統(tǒng)計圖;

4)若該市約有80萬人,請估計安全意識淡薄(選擇DE)的人數(shù).

查看答案和解析>>

同步練習冊答案