【題目】如圖,已知菱形ABCD,點EAB的中點,AFBC于點F,聯(lián)結(jié)EF、EDDF,DEAF于點G,且AE2EGED

(1)求證:DEEF;

(2)求證:BC22DFBF

【答案】(1)證明見解析;(2)證明見解析.

【解析】

1)根據(jù)直角三角形的性質(zhì)得到AE=FE,根據(jù)相似三角形的性質(zhì)得到∠EAG=ADG,求得∠DAG=FEG,根據(jù)菱形的性質(zhì)得到ADBC,求得∠DAG=AFB=90°,于是得到結(jié)論;

2)由AE=EF,AE2=EGED,得到FE2=EGED,推出△FEG∽△DEF,根據(jù)相似三角形的性質(zhì)得到∠EFG=EDF,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論.

(1)AFBC于點F

∴∠AFB90°,

∵點EAB的中點,

AEFE,

∴∠EAF=∠AFE,

AE2EGED,

,

∵∠AEG=∠DEA,

∴△AEG∽△DEA

∴∠EAG=∠ADG,

∵∠AGD=∠FGE

∴∠DAG=∠FEG,

∵四邊形ABCD 是菱形,

ADBC

∴∠DAG=∠AFB90°,

∴∠FEG90°

DEEF;

(2)AEEF,AE2EGED,

FE2EGED,

,

∵∠FEG=∠DEF,

∴△FEG∽△DEF,

∴∠EFG=∠EDF

∴∠BAF=∠EDF,

∵∠DEF=∠AFB90°,

∴△ABF∽△DFE

,

∵四邊形ACBD是菱形,

ABBC,

∵∠AFB90°

∵點EAB的中點,

FEABBC,

BC22DFBF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是△ABC的外接圓,點OBC邊上,∠BAC的平分線交O于點D,連接BD、CD,過點DBC的平行線與AC的延長線相交于點P

1)求證:PDO的切線;

2)求證:ABCPBDCD;

3)當AB5cm,AC12cm時,求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)前夕,某超市購進某種品牌禮品,每盒進價是40元,超市規(guī)定每盒售價不得少于45元,設(shè)每盒售價為x(),每天的銷售量y(),yx成一次的函數(shù)關(guān)系,經(jīng)過市場調(diào)查獲得部分數(shù)據(jù)如下表:

每盒售價為x()

45

50

55

每天的銷售量y()

450

400

350

(1)試求出yx之間的函數(shù)關(guān)系式;

(2)當每盒售價定為多少元時,每天銷售的利潤P()最大?最大利潤是多少?

(3)物價部門規(guī)定:這種禮品每盒售價不得高于60元,如果超市想要每天獲得不低于5250元的利潤,那么超市每天至少銷售這種禮品多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校對七年級300名學(xué)生進行了教學(xué)質(zhì)量監(jiān)測(滿分100分),現(xiàn)從中隨機抽取部分學(xué)生的成績進行整理,并繪制成如圖不完整的統(tǒng)計表和統(tǒng)計圖:

注:60分以下為“不及格”,6069分為“及格”,7079分為“良好”,80分及以上為“優(yōu)秀”

請根據(jù)以上信息回答下列問題:

1)補全統(tǒng)計表和統(tǒng)計圖;

2)若用扇形統(tǒng)計圖表示統(tǒng)計結(jié)果,則“良好”所對應(yīng)扇形的圓心角為多少度?

3)請估計該校七年級本次監(jiān)測成績?yōu)?/span>70分及以上的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,則下列結(jié)論錯誤的是( 。

A. 4a+2b+c0B. abc0C. bacD. 3b2c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面所示各圖是在同一直角坐標系內(nèi),二次函數(shù)y+a+cx+c與一次函數(shù)yax+c的大致圖象.正確的(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

n個環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,當只斷開其中的kkn)個環(huán),要求第一次取走一個環(huán),以后每次都只能比前一次多得一個環(huán),則最多能得到的環(huán)數(shù)n是多少呢?

問題探究:

為了找出nk之間的關(guān)系,我們運用一般問題特殊化的方法,從特殊到一般,歸納出解決問題的方法.

探究一:k=1,即斷開鏈條其中的1個環(huán),最多能得到幾個環(huán)呢?

n=1,2,3時,斷開任何一個環(huán),都能滿足要求,分次取走;

n=4時,斷開第二個環(huán),如圖①,第一次取走1環(huán);第二次退回1環(huán)換取2環(huán),得2個環(huán);第三次再取回1環(huán),得3個環(huán);第四次再取另1環(huán),得4個環(huán),按要求分4次取走.

n=5,6,7時,如圖②,圖③,圖④方式斷開,可以用類似上面的方法,按要求分5,6,7次取走.

n=8時,如圖⑤,無論斷開哪個環(huán),都不可能按要求分次取走.

所以,當斷開1個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成3部分,分別是1環(huán)、2環(huán)和4環(huán),最多能得到7個環(huán).

即當k=1時,最多能得到的環(huán)數(shù)n=1+2+4=1+2×3=1+2×22-1=7.

探究二:k=2,即斷開鏈條其中的2個環(huán),最多能得到幾個環(huán)呢?

從得到更多環(huán)數(shù)的角度考慮,按圖⑥方式斷開,把鏈條分成5部分,按照類似探究一的方法,按要求分1,2,…23次取走.

所以,當斷開2個環(huán)時,把鏈條分成5部分,分別是1環(huán)、1環(huán)、3環(huán)、6環(huán)、12環(huán),最多能得到23個環(huán).

即當k=2時,最多能得到的環(huán)數(shù)n=1+1+3+6+12=2+3×7=2+3×23-1=23.

探究三:k=3,即斷開鏈條其中的3個環(huán),最多能得到幾個環(huán)呢?

從得到更多環(huán)數(shù)的角度考慮,按圖⑦方式斷開,把鏈條分成7部分,按照類似前面探究的方法,按要求分1,2,…63次取走.

所以,當斷開3個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成7部分,分別是1環(huán)、1環(huán)、1環(huán)、4環(huán)、8環(huán)、16環(huán)、32環(huán),最多能得到63個環(huán).

即當k=3時,最多能得到的環(huán)數(shù)n=1+1+1+4+8+16+32=3+4×15=3+4×24-1=63.

探究四:k=4,即斷開鏈條其中的4個環(huán),最多能得到幾個環(huán)呢?

按照類似前面探究的方法,當斷開4個環(huán)時,從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,分別為 ,最多能得到的環(huán)數(shù)n= .請畫出如圖⑥的示意圖.

模型建立:

n個環(huán)環(huán)相扣的圓環(huán)形成一串線型鏈條,斷開其中的kkn)個環(huán),從得到更多環(huán)數(shù)的角度考慮,把鏈條分成 部分,

分別是:1、1、1……1、k+1、 、……、 ,最多能得到的環(huán)數(shù)n =

實際應(yīng)用:

一天一位財主對雇工說:你給我做兩年的工,我每天付給你一個銀環(huán).不過,我用一串環(huán)環(huán)相扣的線型銀鏈付你工錢,但你最多只能斷開銀鏈中的6個環(huán).如果你無法做到每天取走一個環(huán),那么你就得不到這兩年的工錢,如果銀鏈還有剩余,全部歸你!你愿意嗎?

聰明的你是否可以運用本題的方法通過計算幫助雇工解決這個難題,雇工最多能得到總環(huán)數(shù)為多少環(huán)的銀鏈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在反比例函數(shù)y(x0)的圖象上,點B在反比例函數(shù)y(x0)的圖象上,ABx軸,BCx軸,垂足為C,連接AC,若△ABC的面積為2,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“驢友”小明分三次從M地出發(fā)沿著不同的線路線,B線,CN在每條線路上行進的方式都分為穿越叢林、涉水行走和攀登這三種他涉水行走4小時的路程與攀登6小時的路程相等線、C線路程相等,都比A線路程多,A線總時間等于C線總時間的,他用了3小時穿越叢林、2小時涉水行走和2小時攀登走完A線,在B線中穿越叢林、涉水行走和攀登所用時間分別比A線上升了,,,若他用了x小時穿越叢林、y小時涉水行走和z小時攀登走完C線,且xy,z都為正整數(shù),則______

查看答案和解析>>

同步練習冊答案