【題目】某校為了解七年級學生的體重情況,隨機抽取了七年級m名學生進行調(diào)查,將抽取學生的體重情況繪制如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
組別 | 體重(千克) | 人數(shù) |
A | 37.5≤x<42.5 | 10 |
B | 42.5≤x<47.5 | n |
C | 47.5≤x<52.5 | 40 |
D | 52.5≤x<57.5 | 20 |
E | 57.5≤x<62.5 | 10 |
請根據(jù)圖表信息回答下列問題:
(1)填空:①m=_____,②n=_____,③在扇形統(tǒng)計圖中,C組所在扇形的圓心角的度數(shù)等于_______度;
(2)若把每組中各個體重值用這組數(shù)據(jù)的中間值代替(例如:A組數(shù)據(jù)中間值為40千克),則被調(diào)查學生的平均體重是多少千克?
(3)如果該校七年級有1000名學生,請估算七年級體重低于47.5千克的學生大約有多少人?
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線AB與x軸、y軸分別交于點A、B,與反比例函數(shù)y=的圖象在第四象限交于點C,CD⊥x軸于點D,tan∠OAB=2,OA=2,OD=1.
(1)求該反比例函數(shù)的表達式;
(2)點M是這個反比例函數(shù)圖象上的點,過點M作MN⊥y軸,垂足為點N,連接OM、AN,如果S△ABN=2S△OMN,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接2022年冬奧會,鼓勵更多的學生參與到志愿服務中來,甲、乙兩所學校組織了志愿服務團隊選拔活動.為了了解兩所學校學生的整體情況,從兩校進入綜合素質(zhì)展示環(huán)節(jié)的學生中分別隨機抽取了50名學生的綜合素質(zhì)展示成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析.下面給出了部分信息.
a.甲學校學生成績的頻數(shù)分布直方圖如圖:
b.甲學校學生成績在80~90這一組的是:
80 | 80 | 81 | 81 | 82 | 82 | 83 | 83 |
85 | 86 | 86 | 87 | 88 | 88 | 89 | 89 |
c.乙學校學生成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
85 | 84 | 78 | 46% |
根據(jù)以上信息,回答下列問題:
(1)甲學校學生成績的中位數(shù)為 分;
(2)甲學校學生A、乙學校學生B的綜合素質(zhì)展示成績同為83分,這兩人在本校學生中的綜合素質(zhì)展示排名更靠前的是 (填“A”或“B”);
(3)根據(jù)上述信息,推斷哪所學校綜合素質(zhì)展示的水平更高,并至少從兩個不同的角度說明推斷的合理性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在中,,,點為的中點.
(1)若點、分別是、的中點,則線段與的數(shù)量關(guān)系是 ;線段與的位置關(guān)系是 ;
(2)如圖①,若點、分別是、上的點,且,上述結(jié)論是否依然成立,若成立,請證明;若不成立,請說明理由;
(3)如圖②,若點、分別為、延長線上的點,且,直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC=90°,DB=DC,E是BC的中點,連接DE.
(1)求證:四邊形ABED是矩形;
(2)連接AC,若∠ABD=30°,DC=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著科技的發(fā)展,智能產(chǎn)品越來越受到人們的喜愛,為了獎勵員工,某公司打算采購一批智能音箱.現(xiàn)有A,B兩款智能音箱可供選擇,已知A款音箱的單價比B款音箱的單價高50元,購買5個A款音箱和4個B款音箱共需1600元.
(1)分別求出A款音箱和B款音箱的單價;
(2)公司打算采購A,B兩款音箱共20個,且采購A,B兩款音箱的總費用不超過3500元,那么A款音箱最多采購多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標軸分別交于點E、F,與雙曲線y=(x<0)交于點P(﹣1,n),且F是PE的中點.
(1)求直線l的解析式;
(2)若直線x=a與l交于點A,與雙曲線交于點B(不同于A),問a為何值時,PA=PB?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點,點P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點A運動,點Q同時以1厘米/秒的速度從D出發(fā),沿DB勻速向點B運動,其中一個動點到達終點時,另一個動點也隨之停止運動,設它們的運動時間為t秒.
(1)若a=2,那么t為何值時△BPQ與△BDA相似?
(2)已知M為AC上一點,若當t=時,四邊形PQCM是平行四邊形,求這時點P的運動速度.
(3)在P、Q兩點運動過程中,要使線段PQ在某一時刻平分△ABD的面積,點P的運動速度應限制在什么范圍內(nèi)?(提示:對于一元二次方程,有如下的結(jié)論:若x1x2是方程ax2+bx+c=0(a≠0)的兩個根,則x1+x2=﹣,x1x2=)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com