【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),二次函數(shù)y=x2+c的圖象拋物線交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3).
(1)求∠ABC的度數(shù);
(2)若點(diǎn)D是第四象限內(nèi)拋物線上一點(diǎn),△ADC的面積為,求點(diǎn)D的坐標(biāo);
(3)若將△OBC繞平面內(nèi)某一點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到△O′B′C′,點(diǎn)O′,B′均落在此拋物線上,求此時(shí)O′的坐標(biāo).
【答案】(1)∠ABC=60°;(2)D (,).(3)O′(﹣,﹣).
【解析】
試題分析:(1)通過求函數(shù)解析式,求出相應(yīng)線段的長度,觀察AC=2OA,進(jìn)而求出∠ABC度數(shù);
(2)通過觀察三角形ADC面積與三角形AOC面積相等,可以判斷直線OD∥AC,求出直線與拋物線交點(diǎn)即為點(diǎn)D;
(3)利用拋物線解析式設(shè)出O′,通過旋轉(zhuǎn)60°,求出點(diǎn)B′的坐標(biāo),將點(diǎn)B′代入拋物線解析式即可求出.
解:(1)由題意與y軸交于點(diǎn)C(0,﹣3),
∴得解析式為y=x2﹣3,
令y=0,x=±,
∴B(,0),A(﹣,0),
∴OA=,OC=3,AC=2,
∴∠OCA=30°,
∴∠ABC=60°;
(2)由(1)得:OA=,OC=3,
∴S△OAC=×3×=,
過原點(diǎn)與AC平行的直線y=﹣,
直線與拋物線的交點(diǎn)即為點(diǎn)D,
聯(lián)立:,
解得x1=,x2=(舍去),
∴D (,).
(3)設(shè)點(diǎn)O′(m,m2﹣3),
∵順時(shí)針旋轉(zhuǎn)60°,
則點(diǎn)B′(m+,m2﹣),
∴(m+)﹣3=m2﹣,
∴m=﹣,
∴O′(﹣,﹣).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正確的有( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】粗心的小紅在計(jì)算n邊形的內(nèi)角和時(shí),少加了一個(gè)內(nèi)角,求得的內(nèi)角和是2040°,則這個(gè)多邊形的邊數(shù)n和這個(gè)內(nèi)角分別是( )
A.11和60° B.11和120° C.12和60° D.14和120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場統(tǒng)計(jì)了今年1﹣5月A、B兩種品牌冰箱的銷售情況,并將獲得的數(shù)據(jù)繪制成如圖折線統(tǒng)計(jì)圖:
(1)根據(jù)圖中數(shù)據(jù)填寫表格.
(2)通過計(jì)算該商場這段時(shí)間內(nèi)A、B兩種品牌冰箱月銷售量的方差,比較這兩種品牌冰箱月銷售量的穩(wěn)定性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,ABCD是邊長為60cm的正方形硬紙片,切去四個(gè)全等的等腰直角三角形(陰影部分所示),其中E,F(xiàn)在AB上;再沿虛線折起,點(diǎn)A,B,C,D恰好重合于點(diǎn)O處(如圖②所示),形成有一個(gè)底面為正方形GHMN的包裝盒,設(shè)AE=x (cm).
(1)求線段GF的長;(用含x的代數(shù)式表示)
(2)當(dāng)x為何值時(shí),矩形GHPF的面積S (cm2)最大?最大面積為多少?
(3)試問:此種包裝盒能否放下一個(gè)底面半徑為15cm,高為10cm的圓柱形工藝品,且使得圓柱形工藝品的一個(gè)底面恰好落在圖②中的正方形GHMN內(nèi)?若能,請求出滿足條件的x的值或范圍;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示兩輛汽車行駛路程與時(shí)間的關(guān)系(汽車B在汽車A后出發(fā))的圖象,試回答下列問題:
(1)圖中l(wèi)1,l2分別表示哪一輛汽車的路程與時(shí)間的關(guān)系?
(2)寫出汽車A和汽車B行駛的路程s與時(shí)間t的函數(shù)關(guān)系式,并求汽車A和汽車B的速度;
(3)圖中交點(diǎn)的實(shí)際意義是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為( )
A.100米 B.99米 C.98米 D.74米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,b)(b>0),點(diǎn)P是直線AB上位于第二象限內(nèi)的一個(gè)動點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,記點(diǎn)P關(guān)于y軸的對稱點(diǎn)為Q,設(shè)點(diǎn)P的橫坐標(biāo)為a.
(1)當(dāng)b=3時(shí),
①求直線AB的解析式;
②若QO=QA,求P點(diǎn)的坐標(biāo).
(2)是否同時(shí)存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有滿足條件的a、b的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com