【題目】在某市舉辦的以“校園文明”為主題的中小學(xué)生手抄報比賽中,各學(xué)校認(rèn)真組織初賽并按比例篩選出較好的作品參加全市決賽,所有參加市級決賽的作品均獲獎,獎項分為一等獎.二等獎、三等獎和優(yōu)秀獎.現(xiàn)從參加決賽的作品中隨機(jī)抽取部分作品并將獲獎結(jié)果繪制成如下兩幅統(tǒng)計圖請你根據(jù)圖中所給信息解答下列問題:
(1)一等獎所占的百分比是多少?三等獎的人數(shù)是多少?
(2)求三等獎所對應(yīng)的扇形圓心角的度數(shù);
(3)若參加決賽的作品有3000份,估計獲得一等獎和二等獎的總?cè)藬?shù)有多少?
【答案】(1)32人;(2)115.2°;(3)840人.
【解析】
(1)先求出抽樣人數(shù)=優(yōu)秀人數(shù)÷優(yōu)秀百分比,用一等獎的人數(shù)除以總?cè)藬?shù)即可,三等獎百分比=1-(二等獎百分比+一等獎百分比+優(yōu)秀獎百分比),再用三等獎百分比×總?cè)藬?shù)即可;(2)根據(jù)圓心角=360°×百分比計算即可;(3)一等獎和二等獎總?cè)藬?shù)=總份數(shù)×(一等獎百分比+優(yōu)秀獎百分比)即可.
解:(1)由圖可得:抽樣人數(shù)為:40÷40%=100人,
∴一等獎所占的百分比是:8÷100×100%=8%
二等獎的人數(shù)為:100×20%=20人
∴三等獎的人數(shù)為:100﹣8﹣20﹣40=32人;
(2)三等獎所對應(yīng)的扇形圓心角的度數(shù)為:32÷100×360°=115.2°
(3)一等獎和二等獎的總?cè)藬?shù)為:3000× =840人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=4,點(diǎn)P是BC邊上的一個動點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),現(xiàn)將△ABP沿直線AP折疊,使點(diǎn)B落到點(diǎn)B′處;作∠B′PC的角平分線交CD于點(diǎn)E.設(shè)BP=x,CE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)中,點(diǎn)A(1,2),將AO繞點(diǎn)A逆時針旋轉(zhuǎn)90°,點(diǎn)O的對應(yīng)點(diǎn)B恰好落在雙曲線y=(x>0)上,則k的值為( )
A. 2 B. 3 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金松科技生態(tài)農(nóng)業(yè)養(yǎng)殖有限公司種植和銷售一種綠色羊肚菌,已知該羊肚菌的成本是12元/千克,規(guī)定銷售價格不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天該羊肚菌的銷售量y(千克)與銷售價格x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x之間的函數(shù)解析式;
(2)求這一天銷售羊肚菌獲得的利潤W的最大值;
(3)若該公司按每銷售一千克提取1元用于捐資助學(xué),且保證每天的銷售利潤不低于3600元,問該羊肚菌銷售價格該如何確定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知內(nèi)于,為的直徑,,交的延長線于點(diǎn).
(1)為的中點(diǎn),連接,求證:是的切線;
(2)若,求的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是BC邊上的一個動點(diǎn),沿著AE翻折矩形,使點(diǎn)B落在點(diǎn)F處若AB=3,BC=AB,解答下列問題:
(1)在點(diǎn)E從點(diǎn)B運(yùn)動到點(diǎn)C的過程中,求點(diǎn)F運(yùn)動的路徑長;
(2)當(dāng)點(diǎn)E是BC的中點(diǎn)時,試判斷FC與AE的位置關(guān)系,并說明你的理由;
(3)當(dāng)點(diǎn)F在矩形ABCD內(nèi)部且DF=CD時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,則2S=2+22+23+24+…+22021,因此2S-S=22021-1.仿照以上推理,計算出1+2020+20202+20203+…+20202020的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點(diǎn),求△APC的面積的最大值及此時點(diǎn)P的坐標(biāo);
(3)在對稱軸上是否存在一點(diǎn)M,使△ANM的周長最。舸嬖,請求出M點(diǎn)的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為A(1,4),與坐標(biāo)軸交于B、C、D三點(diǎn),且B點(diǎn)的坐標(biāo)為(﹣1,0).
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點(diǎn)M、N,且點(diǎn)N在點(diǎn)M的左側(cè),過M、N作x軸的垂線交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時,求該矩形周長的最大值;
(3)當(dāng)矩形MNHG的周長最大時,能否在二次函數(shù)圖象上找到一點(diǎn)P,使△PNC的面積是矩形MNHG面積的?若存在,求出該點(diǎn)的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com