【題目】我國古代重要建筑的室內(nèi)上方,通常會(huì)在正中部位做出向上凸起的穹窿狀裝飾,稱為藻井.北京故宮博物院內(nèi)的太和殿上方即有藻井(圖1),全稱為龍鳳角蟬云龍隨瓣枋套方八角渾金蟠龍?jiān)寰故境鼍赖难b飾空間和造型藝術(shù).從分層構(gòu)造上來看,太和殿藻井由三層組成:最下層為方井,中層為八角井,上層為圓井.圖2是由圖1抽象出的平面圖形.若最下層方井邊長為1,在圖2中隨機(jī)取一點(diǎn),則此點(diǎn)取自圓內(nèi)的概率為(

    圖1    圖2

A.B.C.D.

【答案】A

【解析】

根據(jù)已知條件可得圓的直徑,求出圓的面積和正方形的面積,再根據(jù)題目分析進(jìn)行求解.

由題可得正方形ABCD的邊長為1

則正方形EFGH的邊長為,如圖所示,則圓的半徑=,

所以正方形ABCD的面積1,

圓的面積,

故所求概率 ,

故答案為A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】折紙是一種許多人熟悉的活動(dòng).近些年,經(jīng)過許多人的努力,已經(jīng)找到了多種將正方形折紙的一邊三等分的精確折法,下面探討其中的一種折法:

(綜合與實(shí)踐)

操作一:如圖1,將正方形紙片ABCD對折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合,再將正方形紙片ABCD展開,得到折痕MN;

操作二:如圖2,將正方形紙片ABCD的右上角沿MC折疊,得到點(diǎn)D的對應(yīng)的點(diǎn)為D′;

操作三:如圖3,將正方形紙片ABCD的左上角沿MD′折疊再展開,折痕MD′與邊AB交于點(diǎn)P;

(問題解決)

請?jiān)趫D3中解決下列問題:

1)求證:BPDP;

2APBP   ;

(拓展探究)

3)在圖3的基礎(chǔ)上,將正方形紙片ABCD的左下角沿CD′折疊再展開,折痕CD′與邊AB交于點(diǎn)Q.再將正方形紙片ABCD過點(diǎn)D′折疊,使點(diǎn)A落在AD邊上,點(diǎn)B落在BC邊上,然后再將正方形紙片ABCD展開,折痕EF與邊AD交于點(diǎn)E,與邊BC交于點(diǎn)F,如圖4.試探究:點(diǎn)Q與點(diǎn)E分別是邊AB,AD的幾等分點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtOBC在直角坐標(biāo)系內(nèi)的位置如圖所示,點(diǎn)Cy軸上,∠OCB90°,反比例函數(shù)y(k0)在第一象限內(nèi)的圖象與OB邊交于點(diǎn)D(m,3),與BC邊交于點(diǎn)E(n6)

(1)mn的數(shù)量關(guān)系;

(2)連接CD,若△BCD的面積為12,求反比例函數(shù)的解析式和直線OB的解析式;

(3)設(shè)點(diǎn)P是線段OB邊上的點(diǎn),在(2)的條件下,是否存在點(diǎn)P,使得以B、CP為項(xiàng)點(diǎn)的三角形與△BDE相似?若存在,求出此時(shí)點(diǎn)P戶的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情突發(fā),危難時(shí)刻,從決定建造到交付使用,雷神山、火神山醫(yī)院僅用時(shí)十天,其建造速度之快,充分展現(xiàn)了中國基建的巨大威力!這樣的速度和動(dòng)員能力就是全 國人民的堅(jiān)定信心和盡快控制疫情的底氣!改革開放年來,中國已經(jīng)成為領(lǐng)先世界的基 建強(qiáng)國,如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點(diǎn)在線段上運(yùn)動(dòng),垂足為點(diǎn)的延長線交于點(diǎn) ,經(jīng)測量,

1)求線段的長度;(結(jié)果 精確到

2)連接,當(dāng)線段時(shí), 求點(diǎn)和點(diǎn)之間的距離.(結(jié)果 精確到,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在宣傳民族團(tuán)結(jié)活動(dòng)中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請結(jié)合圖中所給信息,解答下列問題:

(1)本次調(diào)查的學(xué)生共有_____人;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有1200名學(xué)生,請估計(jì)選擇唱歌的學(xué)生有多少人?

(4)七年一班在最喜歡器樂的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機(jī)選出兩名同學(xué)參加學(xué)校的器樂隊(duì),請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCO內(nèi)接三角形,ABO的直徑,C是弧AF的中點(diǎn),弦BC,AF相交于點(diǎn)E,在BC延長線上取點(diǎn)D,使得AD=AE

1)求證:ADO切線;

2)若OEB=45°,求sin∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10 …,這樣的數(shù)稱為三角形數(shù),而把1、4、9、16…,這樣的數(shù)稱為正方形數(shù)”.

(1)第5個(gè)三角形數(shù)是  ,第n個(gè)三角形數(shù)  ,第5個(gè)正方形數(shù)  ,第n個(gè)正方形數(shù)是 

(2)經(jīng)探究我們發(fā)現(xiàn):任何一個(gè)大于1正方形數(shù)都可以看作兩個(gè)相鄰三角形數(shù)之和.

例如:①4=1+3,9=3+6,16=6+10,   ,   ,….

請寫出上面第4個(gè)和第5個(gè)等式;

(3)在(2)中,請?zhí)骄康?/span>n個(gè)等式,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D、O在△ABC的邊AC上,以CD為直徑的O與邊AB相切于點(diǎn)E,連結(jié)DEOB,且DEOB

1)求證:BCO的切線.

2)設(shè)OBO交于點(diǎn)F,連結(jié)EF,若ADOD,DE4,求弦EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國慶70華誕期間,各超市購物市民絡(luò)繹不絕,呈現(xiàn)濃濃節(jié)日氣氛.百姓超市320元購進(jìn)一批葡萄,上市后很快脫銷,該超市又用680元購進(jìn)第二批葡萄,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但進(jìn)價(jià)每市斤多了0.2元.

1)該超市第一批購進(jìn)這種葡萄多少市斤?

2)如果這兩次購進(jìn)的葡萄售價(jià)相同,且全部售完后總利潤不低于,那么每市斤葡萄的售價(jià)應(yīng)該至少定為多少元?

查看答案和解析>>

同步練習(xí)冊答案