【題目】閱讀探索

問題背景:著名數(shù)學(xué)家華羅庚提出把數(shù)形關(guān)系(勾股定理)帶到其他星球,作為地球人與其他星球進(jìn)行第一次談話的語言.20028月在北京召開的國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖注》,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形(如圖1所示).勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積進(jìn)行了證明.

趙爽證明方法如下:

a、b為直角邊(b>a),以c為斜邊作四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于,把這四個(gè)直角三角形拼成如圖1所示形狀.

RtDAERtABF

∴∠EDA=FAB

∵∠EAD+EDA=90°

∴∠FAB+EAD=90°

∴四邊形ABCD是一個(gè)邊長(zhǎng)為c的正方形,它的面積等于

EF=FG=GH=HE=b-a

HEF=90°

∴四邊形EFGH是一個(gè)邊長(zhǎng)為b-a的正方形,它的面積等于

從而證明了勾股定理.

思維拓展:

1、如果大正方形的面積為13,小正方形的面積為1,直角三角形的較短直角邊長(zhǎng)為a,較長(zhǎng)直角邊長(zhǎng)為b,那么的值為 .

2、美國(guó)第二十屆總統(tǒng)加菲爾德也曾經(jīng)給出了勾股定理的一種證明方法,如圖2所示,

他用兩個(gè)全等的直角三角形和一個(gè)等腰直角三角形拼出了一個(gè)直角梯形,請(qǐng)你利用此圖形驗(yàn)證勾股定理.

證明:∵直角梯形ABCD的面積可以用兩種方法表示:

第一種方法表示為:

第二種方法表示為:

=

探索創(chuàng)新:

用紙做成四個(gè)全等的直角三角形,兩直角邊的長(zhǎng)分別為ab,斜邊長(zhǎng)為c,請(qǐng)你開動(dòng)腦筋,將它們拼成一個(gè)能證明勾股定理的圖形(不同于上面圖1和圖2.請(qǐng)畫出你拼成的圖形,并用你畫的圖形證明勾股定理.

【答案】思維拓展:1、25;2、ab+ab+c2a+b)(a+b),ab+ab+c2,a+b)(a+b);探索創(chuàng)新:見詳解.

【解析】

思維拓展:1、根據(jù)題意,結(jié)合圖形求出aba2+b2的值,原式利用完全平方公式化簡(jiǎn)后代入計(jì)算即可求出值;

2、用三角形的面積和、梯形的面積來表示這個(gè)圖形的面積,從而證明勾股定理.

探索創(chuàng)新:把四個(gè)全等的直角三角形的斜邊首尾相接,可拼成所需圖案,分別用兩種方法計(jì)算大正方形的面積,從而可得結(jié)果.

思維拓展:1、解:根據(jù)題意得:c2=a2+b2=13,ab=13-1=12,即2ab=12
則(a+b2=a2+2ab+b2=13+12=25,
故答案為:25

2、解:此圖可以看成有三個(gè)直角三角形的面積和,面積分別為ab,abc2,

因此圖形面積為ab+ab+c2,

還可以看成一個(gè)直角梯形,其面積為a+b)(a+b),

ab+ab+c2=a+b)(a+b.

探索創(chuàng)新:解:如圖所示,

證明:∵大正方形的面積可表示為(a+b2
大正方形的面積也可表示為:c2+4×ab,
∴(a+b2=c2+4×ab
a2+b2+2ab=c2+2ab,
a2+b2=c2
即直角三角形兩直角邊的平方和等于斜邊的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O外一點(diǎn),AC,BC分別與⊙O相交于D.

(1)在圖中作出ABC的邊AB上的高CH.(要求:①僅用無刻度真尺,且不能用直尺中的直角;②保留必要的作圖痕跡)

(2)連接DE,若,則∠C的度數(shù)是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架梯子AB長(zhǎng)13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個(gè)梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動(dòng)了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三個(gè)頂點(diǎn)在邊長(zhǎng)為1的正方形網(wǎng)格中,已知,.

(1)畫出關(guān)于軸對(duì)稱的(其中,分別是,的對(duì)應(yīng)點(diǎn),不寫畫法);

(2)分別寫出,三點(diǎn)的坐標(biāo).

(3)請(qǐng)寫出所有以為邊且與全等的三角形的第三個(gè)頂點(diǎn)(不與重合)的坐標(biāo)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P,Q是直線y=﹣上的兩點(diǎn),PQ的左側(cè),且滿足OPOQ,OPOQ,則點(diǎn)P的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ADABC的邊BC上的中線,AB=12,AC=8,則邊BC及中線AD的取值范圍是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.垂美四邊形有如下性質(zhì):

垂美四邊形的兩組對(duì)邊的平方和相等.

已知:如圖1,四邊形ABCD是垂美四邊形,對(duì)角線AC、BD相交于點(diǎn)E.

求證:AD2+BC2=AB2+CD2

證明:四邊形ABCD是垂美四邊形

∴AC⊥BD,

∴∠AED=∠AEB=∠BEC=∠CED=90°,

由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,

AB2+CD2=AE2+BE2+CE2+DE2,

∴AD2+BC2=AB2+CD2

拓展探究:

(1)如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.

(2)如圖3,在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;

問題解決:

如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5.求GE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(2,2),若點(diǎn)Px軸上,且△APO是直角三角形,則點(diǎn)P的坐標(biāo)是 ________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是線段AB上除點(diǎn)AB外的任意一點(diǎn),分別以ACBC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AEDCM,連接BDCEN,連接MN

1)求證:AEBD;

2)請(qǐng)判斷△CMN的形狀,并說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案