【題目】如圖,ABC中,AB=8厘米,AC=16厘米,點P從A出發(fā),以每秒2厘米的速度向B運動,點Q從C同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應(yīng)停止運動,那么,當(dāng)以A、P、Q為頂點的三角形與ABC相似時,運動時間是多少?

【答案】s或4s.

【解析】

試題分析:首先設(shè)運動了ts,根據(jù)題意得:AP=2tcm,CQ=3tcm,然后分別從當(dāng)APQ∽△ABC與當(dāng)APQ∽△ACB時去分析求解即可求得答案.

試題解析:設(shè)運動了ts,根據(jù)題意得:AP=2tcm,CQ=3tcm,則AQ=ACCQ=163tcm,

當(dāng)APQ∽△ABC時,,即,解得:t=;

當(dāng)APQ∽△ACB時,,即,解得:t=4;

故當(dāng)以A、P、Q為頂點的三角形與ABC相似時,運動時間是:s或4s.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次八年級350名學(xué)生參加的漢字聽寫大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中若干名學(xué)生的成績(成績取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計圖表:

成績x/

頻數(shù)

頻率

50≤x60

2

0.04

60≤x70

6

0.12

70≤x80

9

80≤x90

0.36

90≤x≤100

15

0.30

請根據(jù)所給信息,解答下列問題:

1a等于多少,b等于多少;

2)請補全頻數(shù)分布直方圖;

3)這次比賽成績的中位數(shù)會落在哪個分?jǐn)?shù)段;

4)若成績在90分以上(包括90分)的為優(yōu)等,則該年級參加這次比賽的350名學(xué)生中成績優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已如拋物線y=-x2+3x+m,其中m為常數(shù)

I)當(dāng)拋物線經(jīng)過點(3,5)時,求該拋物線的解析式。

II)當(dāng)拋物線與直線y=x+3m只有一個交點時,求該拋物線的解析式。

III)當(dāng)0x4時,試通過m的取值范圍討論拋物線與直線y=x+2的公共點的個數(shù)的情況

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的直徑AE10cm,∠B=∠EAC,則AC的長為(  )

A. 5cm B. 5cm C. 5 cm D. 6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB⊙O的直徑,∠ACB的平分線交⊙OD,連接ADBD,過點DDPABCA的延長線于P

1)求證:PD⊙O的切線;

2)當(dāng)AC6BC8時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AC的表達(dá)式為yx8,點P從點A開始沿AO向點O1個單位/s的速度移動,點Q從點O開始沿OC向點C2個單位/s的速度移動.如果P,Q兩點分別從點A,O同時出發(fā),經(jīng)過幾秒能使PQO的面積為8個平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明坐于堤邊垂釣,如圖,河堤的坡角為,長為米,釣竿的傾斜角是,其長為米,若與釣魚線的夾角為,求浮漂與河堤下端之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對非負(fù)實數(shù)x“四舍五入到個位的值記為[x].即當(dāng)n為非負(fù)整數(shù)時,若n≤xn+,則[x]n.如:[2.9]3[2.4]2;……根據(jù)以上材料,解決下列問題:

1)填空[1.8]   ,[]   ;

2)若[2x+1]4,則x的取值范圍是   

3)求滿足[x]x1的所有非負(fù)實數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某茶葉銷售商計劃將m罐茶葉按甲、乙兩種禮品盒包裝出售,其中甲種禮品盒每盒裝4罐,每盒售價240元;乙種禮品盒每盒裝6罐,每盒售價300元,恰好全部裝完.已知每罐茶葉的成本價為30元,設(shè)甲種禮品盒的數(shù)量為x盒,乙種禮品盒的數(shù)量為y.

(1)當(dāng)m=120.

①求y關(guān)于x的函數(shù)關(guān)系式.

②若120罐茶葉全部售出后的總利潤不低于3000元,則甲種禮品盒的數(shù)量至少要多少盒?

(2)m罐茶葉全部售出后平均每罐的利潤恰好為24元,且甲、乙兩種禮品盒的數(shù)量和不超過69盒,求m的最大值.

查看答案和解析>>

同步練習(xí)冊答案