【題目】已知∠BAC的平分線與BC的垂直平分線DG相交于點D,DEABDFAC,垂足分別為E、F,

1)連接CDBD,求證:CDF≌△BDE;

2)若AE5AC3,求BE的長.

【答案】(1)證明見解析;(2)2.

【解析】

1)連CD、BD,如圖,根據(jù)角平行線的性質定理得到DE=DF,根據(jù)線段垂直平分線的性質得CD=BD,則可利用“HL“證明RtCDFRtBDE;

2)先證明RtADFRtADE得到AE=AF,再由RtCDFRtBDE得出BE=CF,進而解答即可.

證明:(1)如圖,連接CD、BD,

AD平分∠BAE,DEAB,DFAC,

DEDF

又∵DG垂直平分BC,

CDBD,

Rt△CDFRt△BDE

RtCDFRtBDEHL),

2)在RtADFRtADE

RtADFRtADEHL),

AEAF,

RtCDFRtBDE,

BECF

CFAFAC532,

BE2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD110°,∠B=∠D90°,在BC,CD上分別找一點M,N,使AMN周長最小,請在圖中畫出AMN,寫出畫圖過程并直接寫出∠MAN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,四邊形各個頂點坐標分別為,

畫出平面直角坐標系,并畫四邊形

試確定圖中四邊形的面積.

如果將四邊形繞點旋轉,試確定旋轉后四邊形上各個頂點的坐標.

如果,你能重新建立適當?shù)淖鴺讼,橫坐標乘以得的圖形與原圖形重合嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,的弦,弦于點,交于點,過點的直線與的延長線交于點,

求證:的切線;

當點在劣弧上運動時,其他條件不變,若.求證:點的中點;

在滿足的條件下,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】主題班會上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學們的一番熱議,達成以下四個觀點:

A.放下自我,彼此尊重; B.放下利益,彼此平衡;

C.放下性格,彼此成就; D.合理競爭,合作雙贏.

要求每人選取其中一個觀點寫出自己的感悟.根據(jù)同學們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:

 觀點

頻數(shù) 

頻率 

 A

 a

 0.2

 B

 12

 0.24

 C

 8

 b

 D

 20

 0.4

(1)參加本次討論的學生共有   人;表中a   ,b   ;

(2)在扇形統(tǒng)計圖中,求D所在扇形的圓心角的度數(shù);

(3)現(xiàn)準備從A,BC,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3x軸于點A(﹣1,0)和點B(3,0).

(1)求該拋物線所對應的函數(shù)解析式;

(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.

①求四邊形ACFD的面積;

②點P是線段AB上的動點(點P不與點A、B重合),過點PPQx軸交該拋物線于點Q,連接AQ、DQ,當△AQD是直角三角形時,求出所有滿足條件的點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的方程的兩根為,,且滿足,則的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與x軸相交于點A(30),與y軸相交于點B(0,6),與正比例函數(shù)yx的圖象相交于點C.

(1)求一次函數(shù)的關系式.

(2)求點C的格標.

(3)若點Dx軸上一點,且以O、CD為頂點的三角形是等腰三角形,請直接寫出所有符合條件的點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)軸的交點為,(點在點的左側),與軸的交點為,頂點部分為,若點是四邊形邊上的點,則的最大值為(

A. -6 B. -8 C. -12 D. -18

查看答案和解析>>

同步練習冊答案