【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=6.
(1)實踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡. ①作∠ABC的角平分線交AC于點D.
②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.
(2)推理計算:四邊形BFDE的面積為
【答案】
(1)解:如圖,DE、DF為所作;
(2)8
【解析】解:(2)∵∠C=90°,∠A=30°, ∴∠ABC=60°,AB=2BC=12,
∵BD為∠ABC的角平分線,
∴∠DBC=∠EBD=30°,
∵EF垂直平分BD,
∴FB=FD,EB=ED,
∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,
∴DE∥BF,BE∥DF,
∴四邊形BEDF為平行四邊形,
而FB=FD,
∴四邊形BEDF為菱形,
在Rt△ADE中,DE= AE,
而AE=AB﹣BE,
∴12﹣BE= BE,解得BE=8,
在Rt△BDC中,CD= BC=2 ,
∴四邊形BFDE的面積= ×8×2 =8 .
所以答案是8 .
【考點精析】關于本題考查的線段垂直平分線的性質和含30度角的直角三角形,需要了解垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】計算下列各題
(1)計算: ﹣4sin45°﹣ + .
(2)先化簡,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是邊AB的中點,現有一點P位于邊AC上,使得△ADP與△ABC相似,則線段AP的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC邊AB上點D、E(不與點A、B重合),滿足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;
(1)當CD⊥AB時,求線段BE的長;
(2)當△CDE是等腰三角形時,求線段AD的長;
(3)設AD=x,BE=y,求y關于x的函數解析式,并寫出定義域.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐:折紙中的數學
動手操作:
如圖,將矩形ABCD折疊,點B落在AD邊上的點B′處,折痕為GH,再將矩形ABCD折疊,點D落在B′H的延長線上,對應點為D′,折痕為B′E,延長GH于點F,O為GE的中點.
數學思考:
(1)猜想:線段OB′與OD′的數量關系是(不要求說理或證明).
(2)求證:四邊形GFEB′為平行四邊形;
(3)拓展探究:
如圖2,將矩形ABCD折疊,點B對應點B′,點D對應點為D′,折痕分別為GH、EF,∠BHG=∠DEF,延長FD′交B′H于點P,O為GF的中點,試猜想B′O與OP的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】4月的某天小欣在“A超市”買了“雀巢巧克力”和“趣多多小餅干”共10包,已知“雀巢巧克力”每包22元,“趣多多小餅干”每包2元,總共花費了80元.
(1)請求出小欣在這次采購中,“雀巢巧克力”和“趣多多小餅干”各買了多少包?
(2)“五一”期間,小欣發(fā)現,A、B兩超市以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計購物超過50元后,超過50元的部分打九折;在B超市累計購物超過100元后,超過100元的部分打八折. ①請問“五一”期間,若小欣購物金額超過100元,去哪家超市購物更劃算?
②“五一”期間,小欣又到“B超市”購買了一些“雀巢巧克力”,請問她至少購買多少包時,平均每包價格不超過20元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某小學三年級到六年級的全體學生參加“禮儀”知識測試,試題共有10題,每題10分.從中隨機抽取了部分學生的成績進行統計,發(fā)現抽測的學生每人至少答對了6題,現將有關數據整理后繪制成如下“年級人數統計圖”和尚未全部完成的“成績情況統計表”.
成績情況統計表
成績 | 100分 | 90分 | 80分 | 70分 | 60分 |
人數 | 21 | 40 | 5 | ||
頻率 | 0.3 |
根據圖表中提供的信息,回答下列問題:
(1)請將統計表補充完整
成績情況統計表
成績 | 100分 | 90分 | 80分 | 70分 | 60分 |
人數 | 21 | 40 | 5 | ||
頻率 | 0.3 |
(2)測試學生中,成績?yōu)?0分的學生人數有 名;眾數是 分;中位數是 分;
(3)若該小學三年級到六年級共有1800名學生,則可估計出成績?yōu)?0分的學生人數約有 名.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與直線AB交于A(﹣4,﹣4),B(0,4)兩點,直線AC:y=﹣ x﹣6交y軸于點C.點E是直線AB上的動點,過點E作EF⊥x軸交AC于點F,交拋物線于點G.
(1)求拋物線y=﹣x2+bx+c的表達式;
(2)連接GB,EO,當四邊形GEOB是平行四邊形時,求點G的坐標;
(3)①在y軸上存在一點H,連接EH,HF,當點E運動到什么位置時,以A,E,F,H為頂點的四邊形是矩形?求出此時點E,H的坐標;
②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求 AM+CM它的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com