【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是邊AB的中點,現有一點P位于邊AC上,使得△ADP與△ABC相似,則線段AP的長為 .
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC=4cm,把它沿著對角線AC方向平移1cm得到菱形EFGH,則圖中陰影部分圖形的面積與四邊形EMCN的面積之比為( )
A.4:3
B.3:2
C.14:9
D.17:9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是AB中點,聯(lián)結CD.
(1)若AB=10且∠ACD=∠B,求AC的長.
(2)過D點作BC的平行線交AC于點E,設 = , = ,請用向量 、 表示 和 (直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的兩條中線AD、CE交于點G,且AD⊥CE,聯(lián)結BG并延長與AC交于點F,如果AD=9,CE=12,那么下列結論不正確的是( )
A.AC=10
B.AB=15
C.BG=10
D.BF=15
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知頂點為A(2,﹣1)的拋物線經過點B(0,3),與x軸交于C、D兩點(點C在點D的左側);
(1)求這條拋物線的表達式;
(2)聯(lián)結AB、BD、DA,求△ABD的面積;
(3)點P在x軸正半軸上,如果∠APB=45°,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點D位于△ABC邊AC上,已知AB是AD與AC的比例中項.
(1)求證:∠ACB=∠ABD;
(2)現有點E、F分別在邊AB、BC上如圖2,滿足∠EDF=∠A+∠C,當AB=4,BC=5,CA=6時,求證:DE=DF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=6.
(1)實踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡. ①作∠ABC的角平分線交AC于點D.
②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.
(2)推理計算:四邊形BFDE的面積為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,用若干個全等的正五邊形可以拼成一個環(huán)狀,圖中所示的是前3個正五邊形的拼接情況,要完全拼成一個圓環(huán)還需要的正五邊形個數是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的 O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)判斷DE與 O的位置關系,并證明你的結論;
(3)若 O的直徑為3,cosB= ,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com