【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,將△ABC進(jìn)行位似變換得到△A1B1C1 .
(1)△A1B1C1與△ABC的位似比是;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)設(shè)點P(a,b)為△ABC內(nèi)一點,則依上述兩次變換后,點P在△A2B2C2內(nèi)的對應(yīng)點P2的坐標(biāo)是 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,AD=AE,BE、CE相交于點F,則圖中全等三角形共有( 。⿲Γ
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=5x+5交x軸于點A,交y軸于點C,過A,C兩點的二次函數(shù)y=ax2+4x+c的圖象交x軸于另一點B.
(1)求二次函數(shù)的表達(dá)式;
(2)連接BC,點N是線段BC上的動點,作ND⊥x軸交二次函數(shù)的圖象于點D,求線段ND長度的最大值;
(3)若點H為二次函數(shù)y=ax2+4x+c圖象的頂點,點M(4,m)是該二次函數(shù)圖象上一點,在x軸、y軸上分別找點F,E,使四邊形HEFM的周長最小,求出點F,E的坐標(biāo).
溫馨提示:在直角坐標(biāo)系中,若點P,Q的坐標(biāo)分別為P(x1 , y1),Q(x2 , y2),
當(dāng)PQ平行x軸時,線段PQ的長度可由公式PQ=|x1﹣x2|求出;
當(dāng)PQ平行y軸時,線段PQ的長度可由公式PQ=|y1﹣y2|求出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),菱形ABCD對角線AC、BD的交點O是四邊形EFGH對角線FH的中點,四個頂點A、B、C、D分別在四邊形EFGH的邊EF、FG、GH、HE上.
(1)求證:四邊形EFGH是平行四邊形;
(2)如圖(2)若四邊形EFGH是矩形,當(dāng)AC與FH重合時,已知 =2,且菱形ABCD的面積是20,求矩形EFGH的長與寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、C把 分成三等分,ED是⊙O的切線,過點B、C分別作半徑的垂線段,已知∠E=45°,半徑OD=1,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列條件中,不能判定直線a與b平行的是( )
A.∠1=∠2
B.∠2=∠3
C.∠3=∠5
D.∠3+∠4=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車廠去年每個季度汽車銷售數(shù)量(輛)占當(dāng)季汽車產(chǎn)量(輛)百分比的統(tǒng)計圖如圖所示.根據(jù)統(tǒng)計圖回答下列問題:
(1)若第一季度的汽車銷售量為2100輛,求該季的汽車產(chǎn)量;
(2)圓圓同學(xué)說:“因為第二,第三這兩個季度汽車銷售數(shù)量占當(dāng)季汽車產(chǎn)量是從75%降到50%,所以第二季度的汽車產(chǎn)量一定高于第三季度的汽車產(chǎn)量”,你覺得圓圓說的對嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com