【題目】在直角坐標系中,設x軸為直線l,函數y=﹣ x,y= x的圖象分別是直線l1 , l2 , 圓P(以點P為圓心,1為半徑)與直線l,l1 , l2中的兩條相切.例如( ,1)是其中一個圓P的圓心坐標.
(1)寫出其余滿足條件的圓P的圓心坐標;
(2)在圖中標出所有圓心,并用線段依次連接各圓心,求所得幾何圖形的周長.
【答案】
(1)解:①若圓P與直線l和l2都相切,
當點P在第四象限時,
過點P作PH⊥x軸,垂足為H,連接OP,如圖1所示.
設y= x的圖象與x軸的夾角為α.
當x=1時,y= .
∴tanα= .
∴α=60°.
∴由切線長定理得:∠POH= ×(180°﹣60°)=60°.
∵PH=1,
∴tan∠POH= = = .
∴OH= .
∴點P的坐標為( ,﹣1).
同理可得:
當點P在第二象限時,點P的坐標為(﹣ ,1);
當點P在第三象限時,點P的坐標為(﹣ ,﹣1);
②若圓P與直線l和l1都相切,如圖2所示.
同理可得:當點P在第一象限時,點P的坐標為( ,1);
當點P在第二象限時,點P的坐標為(﹣ ,1);
當點P在第三象限時,點P的坐標為(﹣ ,﹣1);
當點P在第四象限時,點P的坐標為( ,﹣1).
③若圓P與直線l1和l2都相切,如圖3所示.
同理可得:
當點P在x軸的正半軸上時,點P的坐標為( ,0);
當點P在x軸的負半軸上時,點P的坐標為(﹣ ,0);
當點P在y軸的正半軸上時,點P的坐標為(0,2);
當點P在y軸的負半軸上時,點P的坐標為(0,﹣2).
綜上所述:其余滿足條件的圓P的圓心坐標有:
( ,﹣1)、(﹣ ,1)、(﹣ ,﹣1)、
( ,1)、(﹣ ,1)、(﹣ ,﹣1)、( ,﹣1)、
( ,0)、(﹣ ,0)、(0,2)、(0,﹣2)
(2)解:用線段依次連接各圓心,所得幾何圖形,如圖4所示.
由圖可知:該幾何圖形既軸對稱圖形,又是中心對稱圖形,
由對稱性可得:該幾何圖形的所有的邊都相等.
∴該圖形的周長=12×( ﹣ )=8 .
【解析】(1)對圓P與直線l和l2都相切、圓P與直線l和l1都相切、圓P與直線l1和l2都相切三種情況分別考慮,利用切線長定理和特殊角的三角函數值即可求出點P的坐標.(2)由圖可知:該幾何圖形既軸對稱圖形,又是中心對稱圖形,它的所有的邊都相等.只需求出其中的一條邊就可以求出它的周長.
【考點精析】利用切線長定理和軸對稱圖形對題目進行判斷即可得到答案,需要熟知從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角;兩個完全一樣的圖形關于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關于⊙C的反稱點的定義如下:若在射線CP上存在一點P′,滿足CP+CP′=2r,則稱P′為點P關于⊙C的反稱點,如圖為點P及其關于⊙C的反稱點P′的示意圖.
特別地,當點P′與圓心C重合時,規(guī)定CP′=0
(1)當⊙O的半徑為1時.
①分別判斷點M(2,1),N(,0),T(1,)關于⊙O的反稱點是否存在?若存在,求其坐標;
②點P在直線y=﹣x+2上,若點P關于⊙O的反稱點P′存在,且點P′不在x軸上,求點P的橫坐標的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點A,B,若線段AB上存在點P,使得點P關于⊙C的反稱點P′在⊙C的內部,求圓心C的橫坐標的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標為___,B5的坐標為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設拋物線y=ax2+bx+c(a≠0)過A(0,2),B(4,3),C三點,其中點C在直線x=2上,且點C到拋物線的對稱軸的距離等于1,則拋物線的函數解析式為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點A、B,再將△A0B沿直錢CD折疊,使點A與點B重合.折痕CD與x軸交于點C,與AB交于點D.
(1)點A的坐標為 ;點B的坐標為 ;
(2)求OC的長度,并求出此時直線BC的表達式;
(3)直線BC上是否存在一點M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,透明的圓柱形容器(容器厚度忽略不計)的高為12cm,底面周長為10cm,在容器內壁離容器底部3cm的點B處有一飯粒,此時一只螞蟻正好在容器外壁,且離容器上沿3cm的點A處,則螞蟻吃到飯粒需爬行的最短路徑是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示,已知y= (x>0)圖象上一點P,PA⊥x軸于點A(a,0),點B坐標為(0,b)(b>0),動點M是y軸正半軸上B點上方的點,動點N在射線AP上,過點B作AB的垂線,交射線AP于點D,交直線MN于點Q連接AQ,取AQ的中點為C.
(1)如圖2,連接BP,求△PAB的面積;
(2)當點Q在線段BD上時,若四邊形BQNC是菱形,面積為2 ,求此時P點的坐標;
(3)當點Q在射線BD上時,且a=3,b=1,若以點B,C,N,Q為頂點的四邊形是平行四邊形,求這個平行四邊形的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙、丙三位同學在操場上互相傳球,假設他們相互間傳球是等可能的,并且由甲首先開始傳球.
(1)經過2次傳球后,球仍回到甲手中的概率是;
(2)請用列舉法(畫樹狀圖或列表)求經過3次傳球后,球仍回到甲手中的概率;
(3)猜想并直接寫出結論:經過n次傳球后,球傳到甲、乙這兩位同學手中的概率:P(球傳到甲手中)和P(球傳到乙手中)的大小關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com