【題目】如圖,在△ABC中,∠BAC90°,ABAC,△ABC的三個(gè)頂點(diǎn)在互相平行的三條直線l1,l2l3上,且l1l2之間的距離是1,l2,l3之間的距離是2,則BC的長(zhǎng)度為_____

【答案】2

【解析】

過點(diǎn)BBEl1于點(diǎn)E,過點(diǎn)CCFl1于點(diǎn)F,由余角的性質(zhì)可得∠CAF=∠BAE,由AAS可證ABE≌△CAF,可得AECF1,由勾股定理可求AB的長(zhǎng),BC的長(zhǎng).

解:如圖,過點(diǎn)BBEl1于點(diǎn)E,過點(diǎn)CCFl1于點(diǎn)F,

l1l2之間的距離是1,l2,l3之間的距離是2,

BE3CF1,

∵∠BAC90°,BEAF

∴∠BAE+CAF90°,∠BAE+ABE90°

∴∠CAF=∠BAE,且ABAC,∠AEB=∠AFC90°

∴△ABE≌△CAFAAS

AECF1,

∴在RtABE中,AB

∵∠BAC90°,ABAC

BCAB2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x22m+1x+mm+1=0,

(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)方程的兩根分別為x1、x2,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于點(diǎn)F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿足∠BAC=∠APC=60°,

(1)求證:△ABC是等邊三角形;

(2)求圓心O到BC的距離OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面

(1)請(qǐng)你用直尺和圓規(guī)作出這個(gè)輸水管道的圓形截面的圓心(保留作圖痕跡);

(2)若這個(gè)輸水管道有水部分的水面寬AB=8 cm,水面最深地方的高度為2 cm求這個(gè)圓形截面的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)A(3,0),對(duì)稱軸為直線x=1,給出以下結(jié)論:①abc0;b2﹣4ac0;a+b+cax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)為函數(shù)圖象上的兩點(diǎn),則y1y2,其中正確的是( 。

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過小明還有一個(gè)求助沒有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹狀圖或者列表來分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑作圓弧,分別交AB,ACE,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,以大于EF長(zhǎng)為半徑作圓弧,兩條弧交于點(diǎn)G,作射線AGCD于點(diǎn)H,若∠C=120°,則∠AHD=( 。

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線L1:y=﹣x2+2x+3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,在L1上任取一點(diǎn)P,過點(diǎn)P作直線l⊥x軸,垂足為D,將L1沿直線l翻折得到拋物線L2,交x軸于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).

(1)當(dāng)L1L2重合時(shí),求點(diǎn)P的坐標(biāo);

(2)當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),求此時(shí)L2的解析式;并直接寫出L1L2中,y均隨x的增大而減小時(shí)的x的取值范圍;

(3)連接PM,PB,設(shè)點(diǎn)P(m,n),當(dāng)n= m時(shí),求△PMB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案