【題目】如圖,△ABC的面積為3,BD:DC=2:1,E是AC的中點(diǎn),AD與BE相交于點(diǎn)P,那么四邊形PDCE的面積為( )
A. B. C. D.
【答案】B
【解析】
連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點(diǎn),得△BDP的面積是2y,△APE的面積是x,進(jìn)而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得y= x,再根據(jù)△ABC的面積是3即可求得x、y的值,從而求解.
連接CP,
設(shè)△CPE的面積是x,△CDP的面積是y.
∵BD:DC=2:1,E為AC的中點(diǎn),
∴△BDP的面積是2y,△APE的面積是x,
∵BD:DC=2:1
∴△ABD的面積是4x+2y
∴△ABP的面積是4x.
∴4x+x=2y+x+y,
解得y= x.
又∵△ABC的面積為3
∴4x+x= ,
x= .
則四邊形PDCE的面積為x+y= .
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分AC交AB于M,
(1)求∠BCM的度數(shù);(2)若AB=5,BC=3,求△BCM的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點(diǎn),點(diǎn)P從點(diǎn)A開始沿AB方向運(yùn)動,且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始B→C方向運(yùn)動,且速度為每秒2cm,它們同時出發(fā);設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)從出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)在運(yùn)動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運(yùn)動時間;若不能夠,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD(AB<AD).
(1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點(diǎn)A為圓心,以AD的長為半徑畫弧交邊BC于點(diǎn)E,連接AE;
②作∠DAE的平分線交CD于點(diǎn)F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D、E分別在邊AB、CB上,CD=DE,∠CDB=∠DEC,過點(diǎn)C作CF⊥DE于點(diǎn)F,交AB于點(diǎn)G,
(1)求證:△ACD≌△BDE;
(2)求證:△CDG為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點(diǎn)E,交CB的延長線于點(diǎn)F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B(﹣2,0),點(diǎn)C(8,0),與y軸交于點(diǎn)A.
(1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;
(2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(不與點(diǎn)B,C重合),過點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時,求N點(diǎn)的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過點(diǎn)A(1,2).
(1)當(dāng)b=1,c=﹣4時,求該二次函數(shù)的表達(dá)式;
(2)已知點(diǎn)M(t﹣1,5),N(t+1,5)在該二次函數(shù)的圖象上,請直接寫出t的取值范圍;
(3)當(dāng)a=1時,若該二次函數(shù)的圖象與直線y=3x﹣1交于點(diǎn)P,Q,將此拋物線在直線PQ下方的部分圖象記為C,
①試判斷此拋物線的頂點(diǎn)是否一定在圖象C上?若是,請證明;若不是,請舉反例;
②已知點(diǎn)P關(guān)于拋物線對稱軸的對稱點(diǎn)為P′,若P′在圖象C上,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊長方形紙片ABCD,先折出折痕(對角線)BD,再折疊使AD邊與BD重合,得折痕DG,若AB=4,BC=3,求AG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com