【題目】某火車站現(xiàn)有甲種貨物1530噸,乙種貨物1150噸,安排一列火車將貨物運往某城市;疖嚳蓲A、B兩種不同規(guī)格的車廂50節(jié),已知用一節(jié)A型車廂費用0.5 萬元,用一節(jié)B型車廂的費用0.8萬元.

(1)已知甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型車廂,甲種貨物25噸和乙種貨物35噸可以裝滿一節(jié)B型車廂,請設(shè)計A、B兩種車廂的節(jié)數(shù),有幾種運輸方案?請一一寫出.

(2)哪個方案運費最少?最少運費多少元?

【答案】(1)三種方案:①A車廂28節(jié),B車廂22節(jié);②A車廂29節(jié),B車廂21節(jié);③A車廂30節(jié),B車廂20節(jié);(2)方案③運費最少為31萬元.

【解析】

(1)根據(jù)甲種貨物的總重量≥1530,乙種貨物的總重量≥1150,列方程組求解,注意自變量只能取整數(shù).
(2)由一次函數(shù)的增減性解答.

(1)由題意得:y=0.5x+0.8(50x)=0.3x+40,故所求函數(shù)關(guān)系為y=0.3x+40;

根據(jù)題意可列不等式組

解得28x30

所以,方案有以下幾種

A:28, B:22

A:29, B:21

A:30, B:20;


(2)由第一問不難看出x值越大,y值越小

因此方案③運費最少

y=0.3×30+40=31,

所以,在這些方案中,③方案的總運費最少,最少運費是31萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,射線CBOA,C=OAB=100°,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF。

(1)求∠EOB的度數(shù);

(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;

(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.

(1)請寫出圖中所有∠EOC的補(bǔ)角 ____________________;

(2)如果∠POC:∠EOC=2:5.求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解答過程:如圖甲,ABCD,探索∠P與∠A,∠C之間的關(guān)系.

解:過點PPEAB.

ABCD,

PEABCD(平行于同一條直線的兩條直線互相平行)

∴∠1+∠A180°(兩直線平行,同旁內(nèi)角互補(bǔ)),

2+∠C180°(兩直線平行,同旁內(nèi)角互補(bǔ))

∴∠1+∠A+∠2+∠C360°.

又∵∠APC=∠1+∠2

∴∠APC+∠A+∠C360°.

如圖乙和圖丙,ABCD,請根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD 相交于點O,∠AOD=3BOD+20°.

(1)求∠BOD的度數(shù);

(2)O為端點引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十一長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.

(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?

(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣6x+c與x軸交于點A、B(5,0),與y軸交于點C(0,5),點P是拋物線上的動點,設(shè)點P的橫坐標(biāo)為t,連接PB、PC,PC與x軸交于點D,過點P作y軸的平行線交x軸于點H、交直線BC于點E.

(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)若點P在第四象限,則△BPC的面積有值(填“最大”或“最小”),并求出其值;
(3)當(dāng)t<5時,△BPE能否為等腰三角形?若能,請求出此時點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】政府計劃投資14萬億元實施東進(jìn)戰(zhàn)略.為了解民對東進(jìn)戰(zhàn)略的關(guān)注情況,佳佳隨機(jī)采訪部分民,并對采訪情況制作了統(tǒng)計圖表的一部分如下:

關(guān)注情況

頻數(shù)

頻率

A.高度關(guān)注

m

0.1

B.一般關(guān)注

200

0.5

C.不關(guān)注

60

n

D.不知道

100

0.25

(1)采訪總?cè)藬?shù)為__ __人,m=__ __,n=__ __;

(2)補(bǔ)全統(tǒng)計圖;

(3)估計在30 000名民中高度關(guān)注東進(jìn)戰(zhàn)略的人數(shù)約為 人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師、張老師、李老師(女),姚老師四位數(shù)學(xué)老師報名參加了臨城片青年教師優(yōu)秀課選拔賽,將通過抽簽決定上課節(jié)次,抽簽時女士優(yōu)先
(1)先抽取的李老師不希望上第一節(jié)課,卻偏偏抽到上第一節(jié)課的概率是
(2)在李老師已經(jīng)抽到上第一節(jié)課的條件下,求抽簽結(jié)果中,王老師比姚老師先上課的概率.

查看答案和解析>>

同步練習(xí)冊答案