【題目】如圖(1)所示是某立式家具(角書櫥)的橫斷面,請你設(shè)計(jì)一個方案(角書櫥高2米,房間高2.6米,所以不必從高度方面考慮方案的設(shè)計(jì)),按此方案,可使該家具通過圖(2)中的長廊搬入房間.在圖(3)中把你設(shè)計(jì)的方案畫成草圖,并說明按此方案可把家具搬入房間的理由(注:搬運(yùn)過程中不準(zhǔn)拆卸家具,不準(zhǔn)損壞墻壁)

【答案】可按方案把家具搬入房間.

【解析】

只要DH的長在1.45米以內(nèi),即可順利通過,構(gòu)造直角三角形,利用相應(yīng)的三角函數(shù)求得DH長,看是否在1.45米以內(nèi)即可.

如圖,角書櫥ABCDE,作AMCD,垂足為M,

可知△AFM是等腰直角三角形.

AMFM

AFABBFABBC1.50.52()

AMAFsin45°=2·()

米<1.45米,

故可按方案把家具搬入房間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=3,BC=5P是線段BC上的一動點(diǎn).

1)請用不帶刻度的直尺和圓規(guī),按下列要求作圖:(不要求寫作法,但保留作圖痕跡),在CD邊上確定一點(diǎn)E,使得∠DEP+APB=180°;

2)在(1)的條件下,點(diǎn)P從點(diǎn)B移動到點(diǎn)C的過程中,對應(yīng)點(diǎn)E隨之運(yùn)動,則移動過程中點(diǎn)E經(jīng)過的總路程長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,圓心O在坐標(biāo)原點(diǎn),正方形ABCD的邊長為2,點(diǎn)A、B在第二象限,點(diǎn)C、D在⊙O上,且點(diǎn)D的坐標(biāo)為(02),現(xiàn)將正方形ABCD繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)B運(yùn)動到了⊙O上點(diǎn)B1處,點(diǎn)A、D分別運(yùn)動到了點(diǎn)A1、D1處,即得到正方形A1B1C1D1(點(diǎn)C1C重合);再將正方形A1B1C1D1繞點(diǎn)B1按逆時(shí)針方向旋轉(zhuǎn)150°,點(diǎn)A1運(yùn)動到了⊙O上點(diǎn)A2處,點(diǎn)D1、C1分別運(yùn)動到了點(diǎn)D2C2處,即得到正方形A2B2C2D2(點(diǎn)B2B1重合),,按上述方法旋轉(zhuǎn)2020次后,點(diǎn)A2020的坐標(biāo)為(  )

A.0,2B.2+,﹣1

C.(﹣1,﹣1D.1,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將平行四邊形紙片按如圖方式折疊,使點(diǎn)重合,點(diǎn) 落到處,折痕為

(1)求證:;

(2)連結(jié),判斷四邊形是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)拋物線的頂點(diǎn)為M,直線y=-2x+9y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD.若平移的拋物線與射線CD(含端點(diǎn)C)只有一個公共點(diǎn),求它的頂點(diǎn)橫坐標(biāo)的值或取值范圍;

(3)如圖(2),將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),過Q(0,3)作不平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn).問在y軸的負(fù)半軸上是否存在點(diǎn)P,使△PEF的內(nèi)心在y軸上.若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 拋物線軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實(shí)數(shù)根.其中結(jié)論正確的個數(shù)為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:已知二次函數(shù)經(jīng)過點(diǎn).

1)求該函數(shù)的表達(dá)式;

2)如圖所示,點(diǎn)是拋物線上在第二象限內(nèi)的一個動點(diǎn),且點(diǎn)的橫坐標(biāo)為,連接,.

①求的面積關(guān)于的函數(shù)關(guān)系式;

②求的面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo).

拓展:在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,的坐標(biāo)為,若拋物線與線段有兩個不同的交點(diǎn),請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像交軸于兩點(diǎn),交軸于點(diǎn),連接,已知

1)點(diǎn)的坐標(biāo)是______;

2)若點(diǎn)是拋物線上的任意一點(diǎn),連接、

①當(dāng)的面積相等時(shí),求點(diǎn)的坐標(biāo);

②把沿著翻折,若點(diǎn)與拋物線對稱軸上的點(diǎn)重合,直接寫出點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,菱形ABCO的頂點(diǎn)O在坐標(biāo)原點(diǎn),且與反比例函數(shù)y的圖象相交于Am,3),C兩點(diǎn),已知點(diǎn)B2,2),則k的值為( 。

A. 6B. 6C. 6D. 6

查看答案和解析>>

同步練習(xí)冊答案