【題目】如圖,有長為24米的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借一段墻體(墻體的最大可用長度a=10m),設AB的長為xm,所圍的花圃面積為ym2,則y的最大值是__________.
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個實數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹AB的高度,他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系網(wǎng)格中,△ABC的頂點都在格點上,點C坐標(0,-1).
作出△ABC 關(guān)于原點對稱的△A1B1C1,并寫出點A1的坐標;
把△ABC 繞點C逆時針旋轉(zhuǎn)90°,得△A2B2C2,畫出△A2B2C2,并寫出點A2的坐標;
(3)直接寫出△A2B2C2的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.
(1)求證:BC是⊙O的切線;
(2)已知AD=3,CD=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8cm,BC=6cm,點P從點A沿AC向C以2cm/s的速度移動,到C即停,點Q從點C沿CB向B以1cm/s的速度移動,到B就停.
(1)若P、Q同時出發(fā),經(jīng)過幾秒鐘S△PCQ=2cm2;
(2)若點Q從C點出發(fā)2s后點P從點A出發(fā),再經(jīng)過幾秒△PCQ與△ACB相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,斜坡AB長130米,坡度i=1:2.4,BC⊥AC,
(1)BC= m,AC= m;
(2)現(xiàn)在計劃在斜坡AB的中點D處挖去部分坡體修建一個平行于水平線CA的平臺DE和一條新的斜坡BE,若斜坡BE的坡角為30°,求平臺DE的長;(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線分別交軸、軸于點A、B,拋物線過A,B兩點,點P是線段AB上一動點,過點P作PC 軸于點C,交拋物線于點D.
(1)若拋物線的解析式為,設其頂點為M,其對稱軸交AB于點N.
①求點M、N的坐標;
②是否存在點P,使四邊形MNPD為菱形?并說明理由;
(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com