【題目】如圖,將△ABC向右平移3個(gè)單位長(zhǎng)度,然后再向上平移2個(gè)單位長(zhǎng)度,可以得到△A1B1C1(點(diǎn)A的對(duì)應(yīng)點(diǎn)是A1,點(diǎn)B的對(duì)應(yīng)點(diǎn)是B1,點(diǎn)C的對(duì)應(yīng)點(diǎn)是C1).
(1)畫(huà)出平移后的△A1B1C1;
(2)求△ABC的面積;
(3)已知點(diǎn)P在x軸上,以A1、B1、P為頂點(diǎn)的三角形面積為6,求點(diǎn)P的坐標(biāo).
【答案】(1)圖見(jiàn)解析;(2)5;(3)(-1,0)或(5,0)
【解析】
(1)將△ABC向右平移3個(gè)單位長(zhǎng)度,然后再向上平移2個(gè)單位長(zhǎng)度,即可得到△A1B1C1;
(2)利用正方形將△ABC框住,然后利用正方形的面積減去三個(gè)直角三角形的面積即可;
(3)由平面直角坐標(biāo)系可知:OA1=4,點(diǎn)B1的坐標(biāo)為(2,0),利用三角形的面積公式即可求出B1P,從而求出點(diǎn)P的坐標(biāo).
解:(1)將△ABC向右平移3個(gè)單位長(zhǎng)度,然后再向上平移2個(gè)單位長(zhǎng)度,可以得到△A1B1C1,如圖所示:△A1B1C1即為所求;
(2)S△ABC=4×4-×4×2-×2×1-×4×3=5;
(3)由平面直角坐標(biāo)系可知:OA1=4,點(diǎn)B1的坐標(biāo)為(2,0)
∴=B1P·OA1=6
即B1P×4=6
解得:B1P=3
∴點(diǎn)P的坐標(biāo)為(-1,0)或(5,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)點(diǎn)F是AE延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)F作∠AFD=27°,交AB的延長(zhǎng)線于點(diǎn)D.求證:BE∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(7分)某產(chǎn)品每件的成本10元,試銷(xiāo)階段每件產(chǎn)品的銷(xiāo)售價(jià)(元)與產(chǎn)品的日銷(xiāo)售量(件)之間的關(guān)系如下表:
/元 | 15 | 20 | 30 | … |
/件 | 25 | 20 | 10 | … |
且日銷(xiāo)售量(件)是銷(xiāo)售價(jià)(元)的一次函數(shù).
(1)求出日銷(xiāo)售量(件)與銷(xiāo)售價(jià)(元)的函數(shù)關(guān)系式;
(2)要使每日的銷(xiāo)售利潤(rùn)最大,每件產(chǎn)品的銷(xiāo)售價(jià)應(yīng)定為多少元?此時(shí)最大銷(xiāo)售利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=∠2,∠3=∠4,則下面結(jié)論中錯(cuò)誤的是( )
A. △ADC≌△BCD B. △ABD≌△BAC C. △AOB≌△COD D. △AOD≌△BOC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,以AB為直徑的圓分別交BC,AC于D,E兩點(diǎn),AD交BE于F點(diǎn),現(xiàn)給出下列命題:①DE+BD=AD;②△ABE與△ABD的面積差為ED2 , 則( 。
A.①是假命題,②是真命題 B.①是真命題,②是假命題
C.①是假命題,②是假命題 D.①是真命題,②是真命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把長(zhǎng)方形沿對(duì)角線AC折疊,得到如圖所示的圖形.若∠BAO=34°,則∠BAC的大小為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①AD是△ABC的角平分線,則∠________=∠________= ∠________,
②AE是△ABC的中線,則________=________=________,
③AF是△ABC的高線,則∠________=∠________=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在直線l上(F,C之間不能直接測(cè)量),點(diǎn)A,D在l異側(cè),測(cè)得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,直線a為對(duì)稱(chēng)軸,點(diǎn)A,點(diǎn)C在直線a上.
(1)作△ABC關(guān)于直線a的軸對(duì)稱(chēng)圖形△ADC;
(2)若∠BAC=35°,則∠BDA= ;
(3)△ABD的面積等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com