【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中正確的是(填編號(hào))
【答案】②③
【解析】解:根據(jù)圖象知道
當(dāng)x=1時(shí),y=a+b+c>0,故①錯(cuò)誤;
當(dāng)x=﹣1時(shí),y=a﹣b+c<0,故②正確;
∵拋物線開(kāi)口朝下,
∴a<0,
∵對(duì)稱軸x=﹣ (0<x<1),
∴2a<﹣b,
∴b+2a<0,故③正確;
∵對(duì)稱軸x=﹣ (0<x<1),
∴b>0,
∵拋物線與y軸的交點(diǎn)在x軸的上方,
∴c>0,
∴abc<0,故④錯(cuò)誤.
所以答案是:②③.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1個(gè)單位長(zhǎng)度,向右平移5個(gè)單位長(zhǎng)度,可以得到三角形A′B′C′.
(Ⅰ)在圖中畫出△A′B′C′;
(Ⅱ)直接寫出點(diǎn)A′、B′、C′的坐標(biāo);
(Ⅲ)寫出A′C′與AC之間的位置關(guān)系和大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年金磚五國(guó)峰會(huì)將在廈門舉行,為了解我區(qū)高三年級(jí)1200名學(xué)生對(duì)本次金磚峰會(huì)的關(guān)注程度,隨機(jī)抽取了若干名高三年級(jí)學(xué)生進(jìn)行調(diào)查,按人數(shù)和關(guān)注程度,分別繪制了以下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)這次調(diào)查中,共調(diào)查名高三年級(jí)學(xué)生.
(2)如果把“特別關(guān)注”、“一般關(guān)注”都統(tǒng)計(jì)成關(guān)注,那么我區(qū)關(guān)注本次金磚峰會(huì)的高三年級(jí)學(xué)生大約有多少名?
(3)在這次調(diào)查中,有甲、乙、丙、丁四人特別關(guān)注本次金磚峰會(huì),現(xiàn)準(zhǔn)備從四人中隨機(jī)抽取兩人為本次金磚峰會(huì)的志愿者,請(qǐng)用列表法或畫樹(shù)狀圖的方法求出抽取兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△AOB中點(diǎn)O是原點(diǎn),點(diǎn)A在y軸上,點(diǎn)B的坐標(biāo)是(2 ,2),小明做一個(gè)數(shù)學(xué)實(shí)驗(yàn),在x軸上取一動(dòng)點(diǎn)C,以AC為一邊畫出等邊△ACP,移動(dòng)點(diǎn)C時(shí),探究點(diǎn)P的位置變化情況.
(1)如圖,小明將點(diǎn)C移至x軸負(fù)半軸,在AC的右側(cè)畫出等邊△ACP,并使得頂點(diǎn)P在第三象限時(shí),連接BP,求證:△AOC≌△ABP;
(2)小明在x軸上移動(dòng)點(diǎn)C,并在AC的右側(cè)畫出等邊△ACP時(shí),發(fā)現(xiàn)點(diǎn)P在某函數(shù)圖象上,請(qǐng)求出點(diǎn)P所在函數(shù)圖象的解析式.
(3)小明在x軸上移動(dòng)點(diǎn)C點(diǎn)時(shí),若在AC的左側(cè)畫出等邊△ACP,點(diǎn)P會(huì)不會(huì)在某函數(shù)圖象上?若會(huì)在某函數(shù)圖象上,請(qǐng)直接寫出該函數(shù)圖象的解析式,若不在某函數(shù)圖象上,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在計(jì)算的過(guò)程中,三位同學(xué)給出了不同的方法:
甲同學(xué)的解法:原式=;
乙同學(xué)的解法:原式==1;
丙同學(xué)的解法:原式=(x+3)(x﹣2)+2﹣x=x2+x﹣6+2﹣x=x2﹣4.
(1)請(qǐng)你判斷一下, 同學(xué)的解法從第一步開(kāi)始就是錯(cuò)誤的, 同學(xué)的解法是完全正確的.
(2)乙同學(xué)說(shuō):“我發(fā)現(xiàn)無(wú)論x取何值,計(jì)算的結(jié)果都是1”.請(qǐng)你評(píng)價(jià)一下乙同學(xué)的話是否合理,并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,直線EF與AB、CD分別相交于點(diǎn)E、F.
(1)如圖1,若∠1=120°,∠2=60°,求證AB∥CD;
(2)在(1)的情況下,若點(diǎn)P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系;
①當(dāng)點(diǎn)P在圖2的位置時(shí),可得∠EPF=∠PEB+∠PFD;
請(qǐng)閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式)
解:如圖2,過(guò)點(diǎn)P作MN∥AB,
則∠EPM=∠PEB_____.
∵AB∥CD(已知),MN∥AB(作圖)
∴MN∥CD_____.
∴∠MPF=∠PFD
∴∠_____+∠_____=∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD
②當(dāng)點(diǎn)P在圖3的位置時(shí),∠EPF、∠PEB、∠PFD三個(gè)角之間有何關(guān)系并證明.
③當(dāng)點(diǎn)P在圖4的位置時(shí),請(qǐng)直接寫出∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是2017年杭州市某月24日08時(shí)至25日07時(shí)的空氣質(zhì)量指數(shù)統(tǒng)計(jì)圖(空氣質(zhì)量指數(shù)AQI的值在不同的區(qū)間,就代表了不同的空氣質(zhì)量水平.比如0~50之間,代表“良好”,對(duì)應(yīng)的顏色為綠色;51~100之間,代表“中等”,對(duì)應(yīng)的顏色為黃色;101~150之間,代表“對(duì)敏感人群不健康”,對(duì)應(yīng)的顏色為橙色,等等),則根據(jù)統(tǒng)計(jì)圖得出的下列判斷,正確的是( )
A. 在這個(gè)24小時(shí)中,AQI的值超過(guò)良好限值時(shí)段是24日08時(shí)至24日12時(shí)
B. 在這個(gè)24小時(shí)中,AQI對(duì)應(yīng)的顏色為黃色的時(shí)段持續(xù)了20小時(shí)以上
C. 在這個(gè)24小時(shí)中,AQI的最大值和最小值的差為77
D. 建議中老年朋友在25日06時(shí)至07時(shí)進(jìn)行晨練
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年全國(guó)兩會(huì)于3月5日至20日在北京召開(kāi),為了了解市民“獲取兩會(huì)新聞的最主要途徑”,記者小李開(kāi)展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問(wèn)題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是 ;
(2)扇形統(tǒng)計(jì)圖中,“電視”所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有700萬(wàn)人,請(qǐng)你估計(jì)其中將“電腦上網(wǎng)和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列關(guān)系錯(cuò)誤的是( )
A. ∠AOC=∠AOB+∠BOC
B. ∠AOC=∠AOD-∠COD
C. ∠AOC=∠AOB+∠BOD-∠BOC
D. ∠AOC=∠AOD-∠BOD+∠BOC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com