【題目】在平面直角坐標系中,過一點分別作x軸,y軸的垂線,如果由這點、原點及兩個垂足為頂點的矩形的周長與面積相等,那么稱這個點是平面直角坐標系中的“巧點”.例如,圖1中過點P4,4)分別作x軸,y軸的垂線,垂足為AB,矩形OAPB的周長為16,面積也為16,周長與面積相等,所以點P是巧點.請根據(jù)以上材料回答下列問題:

1)已知點C13),D(-4,-4),E5,-),其中是平面直角坐標系中的巧點的是______;

2)已知巧點Mm,10)(m0)在雙曲線y=k為常數(shù))上,求m,k的值;

3)已知點N為巧點,且在直線y=x+3上,求所有滿足條件的N點坐標.

【答案】1DE;(2m=,k=25;(3N的坐標為(-6,-3)或(36).

【解析】

1)利用矩形的周長公式、面積公式結(jié)合巧點的定義,即可找出點D,E是巧點;

2)利用巧點的定義可得出關(guān)于m的一元一次方程,解之可得出m的值,再利用反比例函數(shù)圖象上點的坐標特征,可求出k值;

3)設N(xx+3),根據(jù)巧點的定義得到2(|x|+|x+3|)=|x||x+3|,分三種情況討論即可求解.

1)∵(4+4)×2=4×4,(5+)×2=5×,(1+3)×21×3,

∴點D和點E是巧點,

故答案為:DE

2)∵點M(m,10)(m0),

∴矩形的周長=2m+10),面積=10m

∵點M是巧點,

2m+10)=10m,解得:m=,

∴點M(,10).

∵點M在雙曲線y=上,

k=×10=25;

3)設N(x,x+3),則2(|x|+|x+3|)=|x||x+3|,

x≤-3時,化簡得:x2+7x+6=0,解得:x=-6x=-1(舍去);

當-3x0時,化簡得:x2+3x+6=0,無實根;

x0時,化簡得:x2-x-6=0,解得:x=3x=-2(舍去),

綜上,點N的坐標為(-6,-3)或(3,6).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,B=C=65°,BD=CE,BE=CF,若A=50°,則DEF的度數(shù)是( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為_____秒時,ABPDCE全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,在邊長為1的正方形的邊上有—動點沿正方形運動一周,的縱坐標與點走過的路程之間的函數(shù)關(guān)系用圖象表示大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市今年中考理化實驗操作考試,采用學生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學實驗(用紙簽D、E、F表示)中各抽取一個進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.

(1) 用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;

(2) 小剛抽到物理實驗B和化學實驗F(記作事件P)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點,分別在等邊的各邊上,且于點,于點于點

1)求證:是等邊三角形;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5.

1)這個云梯的底端B離墻多遠?

2)如圖(2),如果梯子的頂端下滑了8mAC的長),那么梯子的底部在水平方向右滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)ykx+b的圖象經(jīng)過點A0,9),并與直線yx相交于點B,與x軸相交于點C,其中點B的橫坐標為3

1)求B點的坐標和k,b的值;

2)點Q為直線ykx+b上一動點,當點Q運動到何位置時△OBQ的面積等于?請求出點Q的坐標;

3)在y軸上是否存在點P使△PAB是等腰三角形?若存在,請直接寫出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)k為常數(shù),k≠1).

)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;

)若在其圖象的每一支上,yx的增大而減小,求k的取值范圍;

)若其圖象的一支位于第二象限,在這一支上任取兩點Ax1y1、Bx2,y2,當y1y2時,試比較x1x2的大小.

查看答案和解析>>

同步練習冊答案