【題目】在矩形ABCD中,AB8,點H是直線AB邊上的一個點,連接DH交直線CB的干點E,交直線AC于點F,連接BF

1)如圖,點HAB邊上,若四邊形ABCD是正方形,求證:△ADF≌△ABF;

2)在(1)的條件下,若△BHF為等腰三角形,求HF的長;

3)如圖,若tanADH,是否存在點H,使得△BHF為等腰三角形?若存在,求該三角形的腰長;若不存在,試說明理由.

【答案】1)詳見解析;(28;(3)存在,詳見解析.

【解析】

1)根據(jù)SAS證明三角形全等即可.

2)想辦法證明∠ADH=30°,求出AH即可解決問題.

3)如圖②中,可以假設(shè)AH=4kAD=3k,DH=5k,因為△BHF是等腰三角形,∠BHF是鈍角,推出HF=BH,設(shè)BH=HF=x,構(gòu)建方程組解決問題即可.

1)證明:如圖中,

∵四邊形ABCD是正方形,

ABAD,∠FAB=∠FAD45°,

AFAF

∴△ADF≌△ABFSAS).

2)解:如圖中,

∵∠BHF>∠HAD,

∴∠BHF是鈍角,

∵△BHF是等腰三角形,

BHFH,

∴∠HBF=∠BFH,

∵△ADF≌△ABF

∴∠ADF=∠ABF,

∵∠AHD=∠HBF+BFH,

∴∠AHD2ADH,

∵∠AHD+ADH90°,

∴∠ADH30°,

AHADtan30°=,

BHHF8

3)解:如圖中,存在.理由如下:

∵四邊形ABCD是矩形,

ABCD8,ABCD,∠DAH90°,

tanADH,

∴可以假設(shè)AH4kAD3k,則DH5k,

∵△BHF是等腰三角形,∠BHF是鈍角,

HFBH,設(shè)BHHFx,

AHCD,

,

,

AH+BH8,

4k+x8 ②,

①②可得,x(舍棄),

∴存在,該三角形的腰長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近兩年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查,調(diào)查結(jié)果顯示,支付方式有:A微信.B支付寶.C銀行卡.D其他.該小組選取了某一超市一天之內(nèi)購買者的支付方式進行統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了多少名購買者?

2)補全條形統(tǒng)計圖:A微信支付方式所在扇形的圓心角為   度;

3)若該超市這一天內(nèi)有2000名購買者,請你估計B種支付方式的購買者有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊△AB1C1;再以等邊△AB1C1B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊△AB2C2;再以等邊△AB2C2B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊△AB3C3;…,記△B1CB2的面積為S1,B2C1B3的面積為S2,B3C2B4的面積為S3,如此下去,則Sn=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+5經(jīng)過坐標(biāo)軸上A、BC三點,連接AC,tanC,5OA3OB

1)求拋物線的解析式;

2)點Q在第四象限的拋物線上且橫坐標(biāo)為t,連接BQy軸于點E,連接CQCB,△BCQ的面積為S,求St的函數(shù)解析式;

3)已知點D是拋物線的頂點,連接CQDH所在直線是拋物線的對稱軸,連接QH,若∠BQC45°,HRx軸交拋物線于點R,HQHR,求點R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點Ay軸上,點Cx軸上,BCx軸,tanACO.延長AC到點D,過點DDEx軸于點G,且DGGE,連接CE,反比例函數(shù)yk0)的圖象經(jīng)過點B,和CE交于點F,且CFFE21.若△ABE面積為6,則點D的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線x軸交于點B,與y軸交于點C,二次函數(shù)的圖象經(jīng)過點B,C兩點,且與x軸的負(fù)半軸交于點A,動點D在直線BC下方的二次函數(shù)圖象上.

(1)求二次函數(shù)的表達式;

(2)如圖1,連接DC,DB,設(shè)BCD的面積為S,S的最大值;

(3)如圖2,過點DDMBC于點M,是否存在點D,使得CDM中的某個角恰好等于∠ABC2倍?若存在,直接寫出點D的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)殖場為了響應(yīng)黨中央的扶貧政策,今年起采用場內(nèi)+農(nóng)戶養(yǎng)殖模式,同時加強對蛋雞的科學(xué)管理,蛋雞的產(chǎn)蛋率不斷提高,三月份和五月份的產(chǎn)蛋量分別是2.5kg3.6kg,現(xiàn)假定該養(yǎng)殖場蛋雞產(chǎn)蛋量的月增長率相同.

1)求該養(yǎng)殖場蛋雞產(chǎn)蛋量的月平均增長率;

2)假定當(dāng)月產(chǎn)的雞蛋當(dāng)月在各銷售點全部銷售出去,且每個銷售點每月平均銷售量最多為0.32kg.如果要完成六月份的雞蛋銷售任務(wù),那么該養(yǎng)殖場在五月份已有的銷售點的基礎(chǔ)上至少再增加多少個銷售點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線過點且與軸交于點.把點向左平移2個單位,再向上平移4個單位,得到點.過點的直線軸于點

1)求直線的解析式.

2)直線交于點,在直線和直線上是否存在點,使,若存在,求出點的坐標(biāo);若不存在,說明理由.

3)若有過點的直線與線段有公共點且滿足的增大而減小,設(shè)直線軸交點橫坐標(biāo)為,直接寫出的取值范圍________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=10,弦AC=6,ACB的平分線交⊙OD,過點DDEABCA的延長線于點E,連接AD,BD

(1)由AB,BD,圍成的曲邊三角形的面積是

(2)求證:DE是⊙O的切線;

(3)求線段DE的長.

查看答案和解析>>

同步練習(xí)冊答案