【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A11),B42),C3,4),

1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1,并寫出點B1的坐標(biāo);

2)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標(biāo).

【答案】1)見解析,B1的坐標(biāo)為(-42);(2)見解析,P2,0.

【解析】

1)分別作出三個頂點關(guān)于y軸的對稱點,再首尾順次連接即可得;

2)作點A關(guān)于x軸的對稱點,再連接A′B,與x軸的交點即為所求.

解:(1)如圖所示,A1B1C1即為所求,其中點B1的坐標(biāo)為(-4,2).

2)如圖所示,點P即為所求,其坐標(biāo)為(2,0).

故答案為:(1)見解析,B1的坐標(biāo)為(-4,2);(2)見解析,P2,0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,EFB=60°,則矩形ABCD的面積是【 】

A.12 B. 24 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面內(nèi)的三個點A(1,3),B(3,1),O(0,0),把ABO向下平移3個單位再向右平2個單位后得DEF.

(1)直接寫出A、B、O三個對應(yīng)點D、E、F的坐標(biāo);

(2)求DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)商店(簡稱網(wǎng)店)是近年來迅速興起的一種電子商務(wù)形式,小明的網(wǎng)店銷售紅棗、小米兩種商品的相關(guān)信息如下表:

商品

紅棗

小米

規(guī)格

1kg/

2kg/

成本(元/袋)

40

38

售價(元/袋)

60

54

根據(jù)上表提供的信息,解答下列問題

1)已知今年前四個月,小明的網(wǎng)店銷售上表中規(guī)格的紅棗和小米共2000kg,獲得利潤2.8萬元,求這前四個月小明的網(wǎng)店銷售這種規(guī)格的紅棗和小米各多少袋?

2)根據(jù)之前的銷售情況,估計今年5月到12月這后八個月,小明的網(wǎng)店還能銷售同規(guī)格的紅棗和小米共4000kg,其中,紅棗的銷售量不低于1200kg.假設(shè)這后八個月,銷售紅棗xkg),銷售紅棗和小米獲得的總利潤為y(元),求出yx之間的函數(shù)關(guān)系式,并求出這后八個月,小明的網(wǎng)店銷售這種規(guī)格的紅棗和小米至少獲得總利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABD,ACE都是等邊三角形,

1)求證:ABE≌△ADC;

2)若∠ACD=15°,求∠AEB的度數(shù);

3)如圖2,當(dāng)ABDACE的位置發(fā)生變化,使C、E、D三點在一條直線上,求證:ACBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,垂足為,點上,連接并延長交于點,連接.

求證:

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,BE平分∠ABC交AD于點E,F(xiàn)為BE上一點,連接DF,過F作FG⊥DF交BC于點G,連接BD交FG于點H,若FD=FG,BF=3 ,BG=4,則GH的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設(shè)MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn):如圖1,在△ABC中,∠C=90°,分別以AC、BC為邊向外側(cè)作正方形ACDE和正方形BCFG.

(1)△ABC與△DCF面積的關(guān)系是;(請在橫線上填寫“相等”或“不相等”)
(2)拓展探究:若∠C≠90°,(1)中的結(jié)論還成立嗎?若成立,請結(jié)合圖2給出證明;若不成立,請說明理由;

(3)解決問題:如圖3,在四邊形ABCD中,AC⊥BD,且AC與BD的和為10,分別以四邊形ABCD的四條邊為邊向外側(cè)作正方形ABFE、正方形BCHG、正方形CDJI、正方形DALK,運用(2)的結(jié)論,圖中陰影部分的面積和是否有最大值?如果有,請求出最大值,如果沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案