【題目】問題發(fā)現(xiàn):如圖1,在△ABC中,∠C=90°,分別以AC、BC為邊向外側(cè)作正方形ACDE和正方形BCFG.

(1)△ABC與△DCF面積的關(guān)系是;(請在橫線上填寫“相等”或“不相等”)
(2)拓展探究:若∠C≠90°,(1)中的結(jié)論還成立嗎?若成立,請結(jié)合圖2給出證明;若不成立,請說明理由;

(3)解決問題:如圖3,在四邊形ABCD中,AC⊥BD,且AC與BD的和為10,分別以四邊形ABCD的四條邊為邊向外側(cè)作正方形ABFE、正方形BCHG、正方形CDJI、正方形DALK,運用(2)的結(jié)論,圖中陰影部分的面積和是否有最大值?如果有,請求出最大值,如果沒有,請說明理由.

【答案】
(1)相等
(2)解:成立.理由如下:

延長BC到點P,過點A作AP⊥BP于點P;過點D作DQ⊥FC于點Q.如圖所示:

∴∠APC=∠DQC=90°.

∵四邊形ACDE,BCFG均為正方形,

∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,

∴∠ACP=∠DCQ.

在△APC和△DQC中,

△APC≌△DQC(AAS),

∴AP=DQ.

又∵SABC= BCAP,SDFC= FCDQ,

∴SABC=SDFC;


(3)解:圖中陰影部分的面積和有最大值,理由如下:

由(2)得:SAEL=SABD,SBFG=SABC,SCIH=SCBD,SDLK=SDAC

∴陰影部分的面和S=SAEL+SBFG+SCIH+SDLK=2S四邊形ABCD,

設(shè)AC=x,則BD=10﹣x,

∵AC⊥BD,

∴S四邊形ABCD= AC×BD= x(10﹣x)=﹣ x2+5x=﹣ (x﹣5)2+

∵﹣ <0,

∴S四邊形ABCD有最大值,最大值為

∴圖中陰影部分的面積和有最大值為25.


【解析】解:(1)相等;理由如下:

∵四邊形ACDE和四邊形BCFG是正方形,

∴AC=DC,BC=FC,∠ACD=∠BCF=90°,

∵∠ACB=90°,

∴∠DCF=90°=∠ACB;

在△ABC與△DFC中, ,

∴△ABC≌△DFC(AAS).

∴△ABC與△DFC的面積相等;

所以答案是:相等;

【考點精析】本題主要考查了二次函數(shù)的最值的相關(guān)知識點,需要掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A1,1),B4,2),C3,4),

1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1,并寫出點B1的坐標(biāo);

2)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點坐標(biāo)為(24),B點坐標(biāo)為(4,2);

(2)在第二象限內(nèi)的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則C點坐標(biāo)是   ;

(3)求△ABCBC邊上的高長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB8,將紙片折疊,使頂點B落在邊AD上的E點處,折痕的一端G點在邊BC上.

(1)如圖1,當(dāng)折痕的另一端FAB邊上且AE4時,求AF的長

(2)如圖2,當(dāng)折痕的另一端FAD邊上且BG10時,

求證:EFEGAF的長.

(3)如圖3,當(dāng)折痕的另一端FAD邊上,B點的對應(yīng)點E在長方形內(nèi)部,EAD的距離為2cm,且BG10時,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將直角三角形 ABC 沿 AB 方向平移 AD 的長度得到三角形DEF,已知BE=5 EF=8, CG=2,則圖中陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(-31),B(-24).

1)請你在方格中建立直角坐標(biāo)系,并寫出C點的坐標(biāo);

2)把△ABC向下平移1個單位長度,再向右平移2個單位長度,請你畫出平移后的△A1B1C1,若△ABC內(nèi)部一點P的坐標(biāo)為(a,b),則點P的對應(yīng)點P1的坐標(biāo)是

3)在x軸上存在一點D,使△DB1C1的面積等于3,求滿足條件的點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華人民共和國道路交通管理條例規(guī)定:小汽車在城市街道上行駛速度不得超過70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方30 m,過了2 s,測得小汽車與車速檢測儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.

(1)求證:CF為⊙O的切線;
(2)填空:當(dāng)∠CAB的度數(shù)為時,四邊形ACFD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

同步練習(xí)冊答案