【題目】如圖,長方形紙片ABCD中,AB8,將紙片折疊,使頂點B落在邊AD上的E點處,折痕的一端G點在邊BC上.

(1)如圖1,當折痕的另一端FAB邊上且AE4時,求AF的長

(2)如圖2,當折痕的另一端FAD邊上且BG10時,

求證:EFEGAF的長.

(3)如圖3,當折痕的另一端FAD邊上,B點的對應點E在長方形內部,EAD的距離為2cm,且BG10時,求AF的長.

【答案】(1)AF3(2)①證明見解析;②AF6(3)AF

【解析】

1)根據(jù)翻折的性質可得BFEF,然后用AF表示出EF,在RtAEF中,利用勾股定理列出方程求解即可;

2)①根據(jù)翻折的性質可得∠BGF=∠EGF,再根據(jù)兩直線平行,內錯角相等可得∠BGF=∠EFG,從而得到∠EGF=∠EFG,再根據(jù)等角對等邊證明即可;

②根據(jù)翻折的性質可得EGBG,HEAB,FHAF,然后在RtEFH中,利用勾股定理列式計算即可得解;

3)設EHAD相交于點K,過點EMNCD分別交ADBCM、N,然后求出EM、EN,在RtENG中,利用勾股定理列式求出GN,再根據(jù)GENEKM相似,利用相似三角形對應邊成比例列式求出EK、KM,再求出KH,然后根據(jù)FKHEKM相似,利用相似三角形對應邊成比例列式求解即可.

(1)∵紙片折疊后頂點B落在邊AD上的E點處,

BFEF,

AB8,∴EF8AF,

RtAEF中,AE2+AF2EF2,

42+AF2(8AF)2

解得AF3;

(2)①∵紙片折疊后頂點B落在邊AD上的E點處,

∴∠BGF=∠EGF

∵長方形紙片ABCD的邊ADBC,

∴∠BGF=∠EFG,

∴∠EGF=∠EFG,

EFEG;

②∵紙片折疊后頂點B落在邊AD上的E點處,

EGBG10,HEAB8,FHAF

EFEG10,

RtEFH中,FH6,

AFFH6;

(3)如圖3,設EHAD相交于點K,過點EMNCD分別交AD、BCM、N

EAD的距離為2cm

EM2,EN826,

RtENG中,GN8,

∵∠GEN+KEM180°﹣∠GEH180°90°90°,

∵∠GEN+NGE180°90°90°,

∴∠KEM=∠NGE

又∵∠ENG=∠KME90°,

∴△GEN∽△EKM,

,

解得EK ,KM,

KHEHEK8

∵∠FKH=∠EKM,∠H=∠EMK90°,

∴△FKH∽△EKM

,

,

解得FH

AFFH

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】網(wǎng)絡商店(簡稱網(wǎng)店)是近年來迅速興起的一種電子商務形式,小明的網(wǎng)店銷售紅棗、小米兩種商品的相關信息如下表:

商品

紅棗

小米

規(guī)格

1kg/

2kg/

成本(元/袋)

40

38

售價(元/袋)

60

54

根據(jù)上表提供的信息,解答下列問題

1)已知今年前四個月,小明的網(wǎng)店銷售上表中規(guī)格的紅棗和小米共2000kg,獲得利潤2.8萬元,求這前四個月小明的網(wǎng)店銷售這種規(guī)格的紅棗和小米各多少袋?

2)根據(jù)之前的銷售情況,估計今年5月到12月這后八個月,小明的網(wǎng)店還能銷售同規(guī)格的紅棗和小米共4000kg,其中,紅棗的銷售量不低于1200kg.假設這后八個月,銷售紅棗xkg),銷售紅棗和小米獲得的總利潤為y(元),求出yx之間的函數(shù)關系式,并求出這后八個月,小明的網(wǎng)店銷售這種規(guī)格的紅棗和小米至少獲得總利潤多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積時,可以得到一個數(shù)學等式.例如由圖1可以得到.請回答下列問題:

1)寫出圖2中所表示的數(shù)學等式是 ;

2)如圖3,用四塊完全相同的長方形拼成正方形,用不同的方法,計算圖中陰影部分的面積,你能發(fā)現(xiàn)什么?(用含有,的式子表示) ;

3)通過上述的等量關系,我們可知: 當兩個正數(shù)的和一定時,它們的差的絕對值越小,則積越 (填”“);當兩個正數(shù)的積一定時,它們的差的絕對值越小,則和越 (填).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校計劃在某商店購買秋季運動會的獎品,若買5個籃球和10個足球需花費1150元,若買9個籃球和6個足球需花費1170.

1)籃球和足球的單價各是多少元?

2)實際購買時,正逢該商店進行促銷.所有體育用品都按原價的八折優(yōu)惠出售,學校購買了若干個籃球和足球,恰好花費1760.請直接寫出學校購買籃球和足球的個數(shù)各是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校近期舉辦了一年一度的經典誦讀比賽.某班級因節(jié)目需要,須購買A、B兩種道具.已知購買1A道具比購買1B道具多10元,購買2A道具和3B道具共需要45元.

1)購買一件A道具和一件B道具各需要多少元?

2)根據(jù)班級情況,需要這兩種道具共60件,且購買兩種道具的總費用不超過620元.

請問道具A最多購買多少件?

若其中A道具購買的件數(shù)不少于B道具購買件數(shù),該班級共有幾種方案?試寫出所有方案,并求出最少費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題發(fā)現(xiàn):如圖1,在△ABC中,∠C=90°,分別以AC、BC為邊向外側作正方形ACDE和正方形BCFG.

(1)△ABC與△DCF面積的關系是;(請在橫線上填寫“相等”或“不相等”)
(2)拓展探究:若∠C≠90°,(1)中的結論還成立嗎?若成立,請結合圖2給出證明;若不成立,請說明理由;

(3)解決問題:如圖3,在四邊形ABCD中,AC⊥BD,且AC與BD的和為10,分別以四邊形ABCD的四條邊為邊向外側作正方形ABFE、正方形BCHG、正方形CDJI、正方形DALK,運用(2)的結論,圖中陰影部分的面積和是否有最大值?如果有,請求出最大值,如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:在綜合與實踐課上,同學們以“已知三角形三邊的長度,求三角形面積”為主題開展數(shù)學活動,小穎想到借助正方形網(wǎng)格解決問題.圖1,圖2都是8×8的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點.

操作發(fā)現(xiàn):小穎在圖1中畫出△ABC,其頂點AB,C都是格點,同時構造正方形BDEF,使它的頂點都在格點上,且它的邊DE,EF分別經過點CA,她借助此圖求出了△ABC的面積.

1)在圖1中,小穎所畫的△ABC的三邊長分別是AB=__________,BC=__________,AC=__________;△ABC的面積為__________.

解決問題:(2)已知△ABC中,AB=,BC=2,AC=5,請你根據(jù)小穎的思路,在圖2的正方形網(wǎng)格中畫出△ABC,并計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是⊙O外一點,過點P作⊙O的切線PA,切點為A,連接PO,延長PO交⊙O于點B,若∠P=30°,PA=3 ,則弧AB的長為

查看答案和解析>>

同步練習冊答案