【題目】在正方形ABCD中,兩條對角線相交于點(diǎn)O,∠BAC的平分線交BD于點(diǎn)E,若正方形ABCD的周長是16cm,則DE=____________
【答案】4cm
【解析】
根據(jù)正方形的對角線平分一組對角可得∠ODC=∠OCD=∠BAC=45°,再根據(jù)角平分線的定義求出∠OAE,然后求出∠DAE=67.5°,再根據(jù)三角形內(nèi)角和等于180°求出∠DEA=67.5°,從而得到∠DEA=∠DAE,再根據(jù)等角對等邊可得AD=DE,再根據(jù)正方形的周長求出邊長DC的長度,從而得解.
如圖,在正方形ABCD中,∠ODC=∠OCD=∠BAC=45°,
∵AE是∠BAC的平分線,
∴∠OAE=∠BAC=×45°=22.5°,
∴∠DAE=∠OAD+∠OAE=45°+22.5°=67.5°,
在△ADE中,∠DEA=180°∠DAE∠ADE=180°67.5°45°=67.5°
∴∠DEA=∠DAE,
∴DE=DA,
∵正方形ABCD的周長是16cm,
∴邊長DC=16÷4=4(cm),
∴DE=4cm.
故答案為:4cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計(jì)), A為入口, F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF ;彎道為以點(diǎn)O為圓心的一段弧,且弧BC,弧ED,弧CD所對的圓心角均為90°.甲、乙兩車由A口同時(shí)駛?cè)肓⒔粯,均?/span>10m/s的速度行駛,從不同出口駛出. 其間兩車到點(diǎn)O的距離y(m)與時(shí)間x(s)的對應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是( )
A. 甲車在立交橋上共行駛8s B. 從F口出比從G口出多行駛40m
C. 甲車從F口出,乙車從G口出 D. 立交橋總長為150m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市米廠接到加工大米任務(wù),要求天內(nèi)加工完大米.米廠安排甲、乙兩車間共同完成加工任務(wù),乙車間加工中途停工一段時(shí)間維修設(shè)備,然后改變加工效率繼續(xù)加工,直到與甲車間同時(shí)完成加工任務(wù)為止,設(shè)甲、乙兩車間各自加工大米數(shù)量與甲車間加工時(shí)間(天)之間的關(guān)系如圖1所示;未加工大米與甲車間加工時(shí)間(天)之間的關(guān)系如圖2所示,請結(jié)合圖像回答下列問題
(1)甲車間每天加工大米__________;=______________;
(2)直接寫出乙車間維修設(shè)備后,乙車間加工大米數(shù)量與(天)之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用大小和形狀完全相同的小正方體木塊搭成一-個(gè)幾何體,使得它的正視圖和俯視圖如圖所示,則搭成這樣的一個(gè)幾何體至少需要小正方體木塊的個(gè)數(shù)為( )
A.22個(gè)B.19個(gè)C.16個(gè)D.13個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校食堂廚房的桌子上整齊地?cái)[放著若干相同規(guī)格的碟子,碟子的個(gè)數(shù)與碟子的高度的關(guān)系如下表:
(1)當(dāng)桌子上放有個(gè)碟子時(shí),請寫出此時(shí)碟子的高度(用含的式子表示);
(2)分別從三個(gè)方向上看,其三視圖如下圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在每個(gè)邊長都為1的小正方形組成的網(wǎng)格中,點(diǎn)A、P分別為小正方形的中點(diǎn),B為格點(diǎn).
(I)線段AB的長度等于_____;
(Ⅱ)在線段AB上存在一個(gè)點(diǎn)Q,使得點(diǎn)Q滿足∠PQA=45°,請你借助給定的網(wǎng)格,并利用不帶刻度的直尺作出∠PQA,并簡要說明你是怎么找到點(diǎn)Q的:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com