【題目】已知二次函數(shù)yx22(m1)x2m1m為常數(shù)),函數(shù)圖像的頂點(diǎn)為C

1)若該函數(shù)的圖像恰好經(jīng)過(guò)坐標(biāo)原點(diǎn),求點(diǎn)C的坐標(biāo);

2)該函數(shù)的圖像與x軸分別交于點(diǎn)AB,若以AB、C為頂點(diǎn)的三角形是直角三角形,求m的值.

【答案】1,(2m的值為1或-1

【解析】

1)把(0,0)代入yx22(m1)x2m1可求出m的值,可得二次函數(shù)解析式,配方即可得出C點(diǎn)坐標(biāo);(2)令y=0,可用m表示出x1x2,即可表示出AB的距離,根據(jù)二次函數(shù)解析式可用含m的代數(shù)式表示頂點(diǎn)C的坐標(biāo),根據(jù)以A、BC為頂點(diǎn)的三角形是直角三角形可得關(guān)于m的方程,解方程求出m的值即可.

1)解:∵yx22(m1)x2m1的圖像經(jīng)過(guò)點(diǎn)(00

2m10,

m=-,

當(dāng)m=-時(shí),yx2x(x)2,

∴頂點(diǎn)C的坐標(biāo)(,-).

2)解:當(dāng)y0時(shí)x22(m1)x2m10

x12m1,x21

AB,

yx22(m1)x2m1(xm1)2m2

∴頂點(diǎn)C的坐標(biāo)(m1,-m2)

∵以A、BC為頂點(diǎn)的三角形是直角三角形,

2m2,

當(dāng)2m22m時(shí),m10,m21

當(dāng)2m2=-2m時(shí),m10,m2=-1

當(dāng)m0時(shí),AB0(舍)

答:m的值為1或-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,面積為1的等腰直角△OA1A2,∠OA2A190°,以OA2為斜邊在△OA1A2外部作等腰直角△OA2A3,以OA3為斜邊在△OA2A3外部作等腰直角△OA3A4,以OA4為斜邊在△OA3A4外部作等腰直角△OA4A5,,連接A1A3,A2A4A3A5,分別與OA2OA3,OA4,交于點(diǎn)C1,C2C3,按此規(guī)律繼續(xù)下去,則△OAnCn的面積等于_____(用含正整數(shù)n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)軸上是否存在一點(diǎn)C,與AB組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,等邊△ABC中,線段AD為其內(nèi)角角平分線,過(guò)D點(diǎn)的直線B1C1AC于點(diǎn)C1AB的延長(zhǎng)線于點(diǎn)B1

(1)請(qǐng)你探究:,是否都成立?

(2)請(qǐng)你繼續(xù)探究:若ABC為任意三角形,線段AD為其內(nèi)角角平分線,請(qǐng)問(wèn)一定成立嗎?并證明你的判斷.

(3)如圖(2)所示RtABC中,ACB90°,AC8AB,EAB上一點(diǎn)且AE5,CE交其內(nèi)角角平分線ADF.試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是菱形ABCD對(duì)角線BD上的一點(diǎn),且OCOD,連接OA

1)求證:∠AOC2ABC

2)求證:CD2OD·BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=

(1)求a,k的值及點(diǎn)B的坐標(biāo);

(2)觀察圖象,請(qǐng)直接寫(xiě)出不等式ax﹣1≥的解集;

(3)在y軸上存在一點(diǎn)P,使得PDCODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm的速度向終點(diǎn)C運(yùn)動(dòng),將△PQC沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,若四邊形QPCP′為菱形,則t的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙在400米的直線跑道上從同一地點(diǎn)同向勻速跑步,先到終點(diǎn)的人原地休息.已知甲先出發(fā)3秒,跑步過(guò)程中兩人的距離y(米)與乙出發(fā)的時(shí)間t(秒)之間的關(guān)系如圖所示,則下列結(jié)論正確的是( )

A. 乙的速度是4米/秒

B. 離開(kāi)起點(diǎn)后,甲、乙兩人第一次相遇時(shí),距離起點(diǎn)12米

C. 甲從起點(diǎn)到終點(diǎn)共用時(shí)83秒

D. 乙到達(dá)終點(diǎn)時(shí),甲、乙兩人相距68米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的四個(gè)頂點(diǎn)分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.

探究一:巳知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設(shè)存在正方形EFGH,它的面積是正方形ABCD的2倍.

因?yàn)檎叫蜛BCD的面積為1,則正方形EFGH的面積為2,

所以EF=FG=GH=HE=,設(shè)EB=x,則BF=﹣x,

∵Rt△AEB≌Rt△BFC

∴BF=AE=﹣x

在Rt△AEB中,由勾股定理,得

x2+(﹣x)2=12

解得,x1=x2=

∴BE=BF,即點(diǎn)B是EF的中點(diǎn).

同理,點(diǎn)C,D,A分別是FG,GH,HE的中點(diǎn).

所以,存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的2倍

探究二:巳知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過(guò)程)

探究三:巳知邊長(zhǎng)為1的正方形ABCD,   一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)

探究四:巳知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案