【題目】如圖所示,在中,,、分別是、的垂直平分線,點(diǎn)、在上,則_______.
【答案】
【解析】
根據(jù)三角形的內(nèi)角和定理求出∠B+∠C=74°,根據(jù)線段垂直平分線的性質(zhì)得出AE=BE,AN=CN,根據(jù)等腰三角形的性質(zhì)得出∠BAE=∠B,∠C=∠CAN,求出∠BAE+∠CAN=∠B+∠C=74°,即可求出答案.
解:∵△ABC中,∠BAC=106°,
∴∠B+∠C=180°-∠BAC=180°-106°=74°,
∵EF、MN分別是AB、AC的中垂線,
∴AE=BE,AN=CN;
∴∠B=∠BAE,∠C=∠CAN,
即∠B+∠C=∠BAE+∠CAN=74°,
∴∠EAN=∠BAC-(∠BAE+∠CAN)=106°-74°=32°.
故答案為32°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3cm,以B為圓心,1cm為半徑畫圓,點(diǎn)P是⊙B上一個(gè)動(dòng)點(diǎn),連接AP,并將AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AP',連接BP',在點(diǎn)P移動(dòng)的過程中,BP'長度的取值范圍是_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在推進(jìn)城鄉(xiāng)義務(wù)教育均衡發(fā)展工作中,我市某區(qū)政府通過公開招標(biāo)的方式為轄區(qū)內(nèi)全部鄉(xiāng)鎮(zhèn)中學(xué)采購了某型號(hào)的學(xué)生用電腦和教師用筆記本電腦,其中,A鄉(xiāng)鎮(zhèn)中學(xué)更新學(xué)生用電腦110臺(tái)和教師用筆記本電腦32臺(tái),共花費(fèi)30.5萬元;B鄉(xiāng)鎮(zhèn)中學(xué)更新學(xué)生電腦55臺(tái)和教師用筆記本電腦24臺(tái),共花費(fèi)17.65萬元.
(1)求該型號(hào)的學(xué)生用電腦和教師用筆記本電腦單價(jià)分別是多少萬元?
(2)經(jīng)統(tǒng)計(jì),全部鄉(xiāng)鎮(zhèn)中學(xué)需要購進(jìn)的教師用筆記本電腦臺(tái)數(shù)比購進(jìn)的學(xué)生用電腦臺(tái)數(shù)的少90臺(tái),在兩種電腦的總費(fèi)用不超過預(yù)算438萬元的情況下,至多能購進(jìn)的學(xué)生用電腦和教師用筆記本電腦各多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx2-2mx-3m(m>0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)M為拋物線的頂點(diǎn),且OC=OB.
(1)求拋物線的解析式.
(2)若拋物線上有一點(diǎn)P,連PC交線段BM于Q點(diǎn),且S△BPQ=S△CMQ,求P點(diǎn)的坐標(biāo).
(3)把拋物線沿x軸正半軸平移n個(gè)單位,使平移后的拋物線交直線BC于E、F兩點(diǎn),且E、F關(guān)于點(diǎn)B對(duì)稱,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線l都經(jīng)過y軸上的一點(diǎn)P,且拋物線L的頂點(diǎn)Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關(guān)系.此時(shí),直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.
(1)若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關(guān)系,求m,n的值;
(2)若某“路線”L的頂點(diǎn)在反比例函數(shù)y=的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;
(3)當(dāng)常數(shù)k滿足≤k≤2時(shí),求拋物線L:y=ax2+(3k2﹣2k+1)x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)α角(0°<α<90°)得到△DEC,設(shè)CD交AB于F,連接AD,△ADF是等腰三角形旋轉(zhuǎn)角α度數(shù)為( 。
A. 20° B. 40° C. 20°或40° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長度至點(diǎn)F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對(duì)航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請(qǐng)根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點(diǎn)后一位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB,BC,CD分別與⊙O相切于E,F(xiàn),G三點(diǎn),且AB∥CD,連接OB,OC.
(1)如圖1,求∠BOC的度數(shù);
(2)如圖2,延長CO交⊙O于點(diǎn)M,過點(diǎn)M作MN∥OB交CD于點(diǎn)N,當(dāng)OB=6,OC=8時(shí),求⊙O的半徑及MN的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com