【題目】如圖,正方形ABCD中,AB=3cm,以B為圓心,1cm為半徑畫圓,點(diǎn)P是⊙B上一個(gè)動點(diǎn),連接AP,并將AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AP',連接BP',在點(diǎn)P移動的過程中,BP'長度的取值范圍是_____cm.
【答案】(3-1)cm≤BP≤(3+1).
【解析】
通過畫圖發(fā)現(xiàn),點(diǎn)P′的運(yùn)動路線為以D為圓心,以1為半徑的圓,可知:當(dāng)P′在對角線BD上時(shí),BP′最小,先證明△PAB≌△P′AD,則P′D=PB=1,再利用勾股定理求對角線BD的長,則得出BP′的長.
如圖,當(dāng)P′在對角線BD上時(shí),BP′最。划(dāng)P′在對角線BD的延長線上時(shí),BP′最大.
連接BP,
①當(dāng)P′在對角線BD上時(shí),
由旋轉(zhuǎn)得:AP=AP′,∠PAP′=90°,
∴∠PAB+∠BAP′=90°,
∵四邊形ABCD為正方形,
∴AB=AD,∠BAD=90°,
∴∠BAP′+∠DAP′=90°,
∴∠PAB=∠DAP′,
∴△PAB≌△P′AD,
∴P′D=PB=1,
在Rt△ABD中,∵AB=AD=3,
由勾股定理得:BD==3,
∴BP′=BD-P′D=3-1,
即BP′長度的最小值為(3-1)cm.
②當(dāng)P′在對角線BD的延長線上時(shí),
同理可得BD==3,
∴BP′=BD+P′D=3+1,
即BP′長度的最大值為(3+1)cm.
∴BP'長度的取值范圍是(3-1)cm≤BP≤(3+1)cm
故答案為:(3-1)cm≤BP≤(3+1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P為拋物線為常數(shù),)上任意一點(diǎn),將拋物線繞頂點(diǎn)G逆時(shí)針旋轉(zhuǎn)90°后得到的圖象與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的上方),點(diǎn)Q為點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn).
(1)拋物線的對稱軸是直線________,當(dāng)m=2時(shí),點(diǎn)P的橫坐標(biāo)為4時(shí),點(diǎn)Q的坐標(biāo)為_________;
(2)設(shè)點(diǎn)Q請你用含m,的代數(shù)式表示則________;
(3)如圖,點(diǎn)Q在第一象限,點(diǎn)D在軸的正半軸上,點(diǎn)C為OD的中點(diǎn),QO平分∠AQC,當(dāng)AQ=2QC,QD=時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)P(m,4)在反比例函數(shù)y=﹣的圖象上,正比例函數(shù)的圖象經(jīng)過點(diǎn)P和點(diǎn)Q(6,n).
(1)求正比例函數(shù)的解析式;
(2)求P、Q兩點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,PA、PB是⊙O的兩條弦,AB為直徑,C為的中點(diǎn),弦CD⊥PA于點(diǎn)E,寫出AB與AC的數(shù)量關(guān)系,并證明;
(2)如圖2,PA、PB是⊙O的兩條弦,AB為弦,C為劣弧的中點(diǎn),弦CD⊥PA于E,寫出AE、PE與PB的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售個(gè);若銷售單價(jià)每降低元,每天可多售出個(gè).已知每個(gè)玩具的固定成本為元,問這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,太陽光線與地面成角,一棵傾斜的大樹與地面成角,這時(shí)測得大樹在地面上的影長約為,則大樹的長約為________(保留兩個(gè)有效數(shù)字,下列數(shù)據(jù)供選用:,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.
(1)求拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com