【題目】如圖,AB為半圓O的直徑,點C為半圓上任一點.

(1)若∠BAC=30°,過點C作半圓O的切線交直線AB于點P.求證:PBC≌△AOC;

(2)若AB=6,過點CAB的平行線交半圓O于點D.當以點A,O,CD為頂點的四邊形為菱形時,求的長.

【答案】()證明見解析;(2)π2π.

【解析】

(1)根據(jù)圓周角定理得到∠ACB=90°,推出△OBC是等邊三角形,根據(jù)等邊三角形和外角的性質(zhì)得到∠AOC=∠PBC=120°,根據(jù)切線的性質(zhì)得到∠OCP=90°,根據(jù)全等三角形的判定即可得到結(jié)論;(2)根據(jù)菱形的性質(zhì)得到OA=AD=CD=OC,連接OD,得到△AOD與△COD是等邊三角形,根據(jù)等邊三角形的性質(zhì)得到∠AOD=∠COD=60°,求得∠BOC=60°,根據(jù)弧長公式即可得到結(jié)論.

1)AB為半圓O的直徑,

∴∠ACB=90°,

∵∠BAC=30°,

∴∠ABC=60°,

OBOC

∴△OBC是等邊三角形,

OCBC,OBCBOC=60°,

∴∠AOCPBC=120°,

CP是⊙O的切線,

OCPC,

∴∠OCP=90°,

∴∠ACOPCB,

PBCAOC中,,

∴△PBC≌△AOCASA

(2)如圖1,連接OD,BDCD,

∵四邊形AOCD是菱形,

OAADCDOC,

則,OAODOC,

∴△AODCOD是等邊三角形,

∴∠AODCOD=60°,

∴∠BOC=60°,

的長==π;

如圖2,同理∠BOC=120°,

的長==2π,

綜上所述,的長為π2π.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是⊙O外一點,過點P作⊙O的切線,切點為A,連接PO并延長,交⊙O于B、C兩點.

(1)求證:△PBA∽△PAC;

(2)若∠BAP=30°,PB=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABDC,BFCE,需要補充一個條件,就能使△ABE≌△DCF,下面幾個答案:AEDFAEDF;ABDCA=∠D.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班同學上學期全部參加了捐款活動,捐款情況如下統(tǒng)計表:

金額(元)

5

10

15

20

25

30

人數(shù)(人)

8

12

10

6

2

2

(1)求該班學生捐款額的平均數(shù)和中位數(shù);

(2)試問捐款額多于15元的學生數(shù)是全班人數(shù)的百分之幾?

(3)已知這筆捐款是按3:5:4的比例分別捐給災(zāi)區(qū)民眾、重病學生、孤老病者三種被資助的對象,問該班捐給重病學生是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以ABC的邊AB為直徑畫⊙O,交AC于點D,半徑OEBD,連接BE,DEBD,設(shè)BEAC于點F,若∠DEBDBC

(1)求證:BC是⊙O的切線;

(2)若BFBC=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑為ABD是半圓上的一個動點(不與點AB重合),連接BD并延長至點C,使CDBD,連接AC,過點DDEAC于點E

(1)請猜想DE與⊙O的位置關(guān)系,并說明理由;

(2)當AB=4,BAC=45°時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,的半徑長是,當時,與直線的位置關(guān)系是________;當時,與直線的位置關(guān)系是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知OA,OB是⊙O的半徑,且OAOB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.

(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大。

(2)如圖②,點POA的延長線上,若∠OBQ=65°,求∠AQE的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,點P在線段AB上以3 cm/s的速度,由AB運動,同時點Q在線段BD上由BD運動.

(1)若點Q的運動速度與點P的運動速度相等,當運動時間t=1(s),△ACP與△BPQ是否全等?說明理由,并直接判斷此時線段PC和線段PQ的位置關(guān)系;

(2)將 “AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA”,其他條件不變.若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能使△ACP與△BPQ全等.

(3)在圖2的基礎(chǔ)上延長AC,BD交于點E,使C,D分別是AE,BD中點,若點Q以(2)中的運動速度從點B出發(fā),點P以原來速度從點A同時出發(fā),都逆時針沿△ABE三邊運動,求出經(jīng)過多長時間點P與點Q第一次相遇.

查看答案和解析>>

同步練習冊答案