【題目】定義:我們把對(duì)角線互相垂直的四邊形叫做神奇四邊形.順次連接四邊形各邊中點(diǎn)得到的四邊形叫做中點(diǎn)四邊形.
(1)判斷:
①在平行四邊形、矩形、菱形中,一定是神奇四邊形的是 ;
②命題:如圖1,在四邊形中,則四邊形是神奇四邊形.此命題是_____(填“真”或“假”)命題;
③神奇四邊形的中點(diǎn)四邊形是
(2)如圖2,分別以的直角邊和斜邊為邊向外作正方形和正方形,連接
①求證:四邊形是神奇四邊形;
②若,求的長(zhǎng);
(3)如圖3,四邊形是神奇四邊形,若分別是方程的兩根,求的值.
【答案】(1)菱形;真;矩形;(2)①見(jiàn)解析,②;(3)5
【解析】
(1)①根據(jù)神奇四邊形的定義即可判斷;
②連接AC、BD,根據(jù)SSS證明△ADC≌△ABC得出∠DAC=∠BAC,再利用等腰三角形三線合一的性質(zhì)證明AC⊥BD即可得到結(jié)論;
③根據(jù)四邊形對(duì)角線互相垂直,運(yùn)用三角形中位線平行于第三邊證明四個(gè)角都是直角,判斷是矩形.
(2)①判斷出CE⊥BG,即可得出四邊形BCGE是神奇四邊形;
②利用勾股定理即得出,再把相關(guān)數(shù)據(jù)代入求解即可;
(3)利用勾股定理即可得出,把,代入求得,再由方程得到,,進(jìn)而得出,求解方程即可.
①∵在平行四邊形、矩形、菱形中,兩條對(duì)角線互相垂直的四邊形是菱形,
∴菱形一定是神奇四邊形;
故答案為:菱形;
②連接AC、BD,
在△ACD和△ACB中,
∴△ACD≌△ACB
∴∠DAC=∠BAC
∵AB=AD
∴AC⊥BD
∴四邊形是神奇四邊形.
故答案為:真;
③如圖:∵E、F、G、H分別為各邊中點(diǎn),
∴EF∥GH∥AC,EF=GH=AC,
EH=FG=DB,EH∥FG∥BD,
∵DB⊥AC,
∴EF⊥EH,
∴四邊形EFGH是矩形.
故答案為:矩形;
證明:連接相交于點(diǎn)交于點(diǎn),如圖所
正方形和正方形,
,
,即
在和中,
,
,
,
,即
四邊形是神奇四邊形;
②四邊形是神奇四邊形,
,
由勾股定理得
,
,
正方形和正方形,
,
.
四邊形是神奇四邊形,同中②的證明方法,可得
又分別是方程的兩根.
解得
當(dāng)時(shí),不合題意,所以舍去,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=的圖象上,連接OA、OB,若OA⊥OB,OB=OA,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將兩塊直角三角板如圖1放置,等腰直角三角板ABC的直角頂點(diǎn)是點(diǎn)A,AB=AC=3,直角板EDF的直角頂點(diǎn)D在BC上,且CD:BD=1:2,∠F=30°.三角板ABC固定不動(dòng),將三角板EDF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<90°).
(1)當(dāng)α= 時(shí),EF∥BC;
(2)當(dāng)α=45°時(shí),三角板EDF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)至如圖2位置,設(shè)DF與AC交于點(diǎn)M,DE交AB于點(diǎn)N,求四邊形ANDM的面積.
(3)如圖3,設(shè)CM=x,四邊形ANDM的面積為y,求y關(guān)于x的表達(dá)式(不用寫(xiě)x的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶移動(dòng)為了提升新型冠狀肺炎“停課不停學(xué)”期間某片區(qū)網(wǎng)絡(luò)信號(hào),保證廣大師生網(wǎng)絡(luò)授課、聽(tīng)課的質(zhì)量,臨時(shí)在坡度為的山坡上加裝了信號(hào)塔(如圖所示),信號(hào)塔底端到坡底的距離為3.9米.同時(shí)為了提醒市民,在距離斜坡底4.4米的水平地面上立了一塊警示牌.當(dāng)太陽(yáng)光線與水平線成53°角時(shí),測(cè)得信號(hào)塔落在警示牌上的影子長(zhǎng)為3米,則信號(hào)塔的高約為(tan53°≈1.3)( ).
A.10.4B.11.9C.11.4D.13.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A(﹣1,0),與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)B(,n).連接OB,若S△AOB=1.
(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)直接寫(xiě)出不等式組 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)過(guò)A(-1,1),B(3,1),C(-2,y1),D(2,y2)四點(diǎn),則y1與y2的大小關(guān)系是( )
A.y1>y2B.y1=y2C.y1<y2D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)遵義紅色文化,傳承紅色文化精神,某校準(zhǔn)備組織學(xué)生開(kāi)展研學(xué)活動(dòng).經(jīng)了解,有A.遵義會(huì)議會(huì)址、B.茍壩會(huì)議會(huì)址、C.婁山關(guān)紅軍戰(zhàn)斗遺址、D.四渡赤水紀(jì)念館共四個(gè)可選擇的研學(xué)基地.現(xiàn)隨機(jī)抽取部分學(xué)生對(duì)基地的選擇進(jìn)行調(diào)查,每人必須且只能選擇一個(gè)基地.根據(jù)調(diào)查結(jié)果繪制如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)統(tǒng)計(jì)圖中______,______;
(2)若該校有1500名學(xué)生,請(qǐng)估計(jì)選擇基地的學(xué)生人數(shù);
(3)某班在選擇基地的6名學(xué)生中有4名男同學(xué)和2名女同學(xué),需從中隨機(jī)選出2名同學(xué)擔(dān)任“小導(dǎo)游”,請(qǐng)用樹(shù)狀圖或列舉法求這2名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過(guò)點(diǎn)B作⊙O的切線,交DA的延長(zhǎng)線于點(diǎn)E,連接BD,且∠E=∠DBC.
(1)求證:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com