【題目】現(xiàn)有一張五邊形的鋼板ABCDE如圖所示,∠A=∠B=∠C=90°,現(xiàn)在AB邊上取一點P,分別以AP,BP為邊各剪下一個正方形鋼板模型,所剪得的兩個正方形面積和的最大值為_____m2

【答案】14.5

【解析】

解:過DDFBC,過EEFBC,則EF=DF=2m,

∴△DEF是等腰直角三角形,

PB=x(m),兩個正方形面積和為S,則NG=DG=x﹣3,

BM=BC﹣CM=4﹣(x﹣3)=7﹣x,

BM=MN得:7﹣x=x,

解得:x=3.5m,

0<x≤3.5,且5-x≤2

3≤x≤3.5

S=(5﹣x)2+x2=2x2﹣10x+25=2(x﹣2.5)2+12.5,

∴當x=3.5時,S有最大值,S=2×(3.5﹣2.5)2+12.5=14.5m2

故答案為:14.5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖四邊形OACB是菱形,OBX軸的正半軸上,sinAOB=.反比例函數(shù)y=在第一象限圖象經(jīng)過點A,與BC交于點F.SAOF=,則k=( 。

A. 15 B. 13 C. 12 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由.

小敏與同桌小聰討論后,進行了如下解答:

(1)特殊情況,探索結論

當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過點E作EFBC,交AC于點F.

(請你完成以下解答過程)

(3)拓展結論,設計新題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為_____秒時,ABPDCE全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點P在線段AB外,且PA=PB,求證:點P在線段AB的垂直平分線上,在證明該結論時,需添加輔助線,則作法不正確的是(  )

A. 作∠APB的平分線PCAB于點C

B. 過點PPCAB于點CAC=BC

C. AB中點C,連接PC

D. 過點PPCAB,垂足為C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB為直徑作O,點C為O上一點,劣弧CB沿BC翻折,交AB于點D,過A作O的切線交DC的延長線于點E.

(1)求證:AC=CD;

(2)已知tanE=,AC=2,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC繞點A按逆時針方向旋轉至AB′C′(B與B′,C與C′分別是對應頂點),使AB′BC,B′C′分別交AC,BC于點D,E,已知AB=AC=5,BC=6,則DE的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某建筑商承接一條道路的鋪設工程,需購置一批大小相同的花崗石板,它的長為160cm將這批花崗石板按如圖所示的兩種方案進行切割(不計損耗,余料不再利用),切割后的M型和N型小花崗石板可拼成如圖所示的正方形(該圖案不重疊無縫隙),圖的道路由若干個圖的正方形拼接而成(該圖案不重疊無縫隙).

(1)M型小花崗石板的長AB=   cm,寬AC=   cm.

(2)現(xiàn)有110塊花崗石板切割后恰好拼成若干個圖所示的正方形,并將這些正方形鋪設成圖的道路,能鋪設多少米?

(3)現(xiàn)有a張花崗石板,用方案甲切割;b張花崗石板,用方案乙切割,同時從外地材料公司調來M型小花崗石板64塊.用完現(xiàn)有的M型和N型小花崗石板恰好能完整拼成如圖的道路圖案,若61≤a≤69,則道路最多能鋪設多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個盒子里有完全相同的三個小球,球上分別標上數(shù)字-1、1、2.隨機摸出一個小球(不放回),其數(shù)字記為p,再隨機摸出另一個小球,其數(shù)字記為q,則p,q使關于x的方程x2+px+q=0有實數(shù)根的概率是(  )

A. B. C. D.

查看答案和解析>>

同步練習冊答案