【題目】如圖,已知△ABC,AB=AC,若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結(jié)論一定正確的是( )

A.AE=EC
B.AE=BE
C.∠EBC=∠BAC
D.∠EBC=∠ABE

【答案】C
【解析】解: ∵AB=AC,
∴∠ABC=∠C,
又∵BE=BC,
∴∠BEC=∠C,
∴∠ABC=∠BEC,
又∵∠BEC=∠A+∠ABE,∠ABC=∠ABE+∠EBC,
∴∠A=∠EBC,
故答案選C.
【考點精析】解答此題的關(guān)鍵在于理解三角形的外角的相關(guān)知識,掌握三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角,以及對等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三年級(1)班要舉行一場畢業(yè)聯(lián)歡會.規(guī)定每個同學(xué)分別轉(zhuǎn)動下圖中兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤A、B(轉(zhuǎn)盤A被均勻分成三等份.每份分別標(biāo)上1.2,3三個數(shù)宇.轉(zhuǎn)盤B被均勻分成二等份.每份分別標(biāo)上4,5兩個數(shù)字).若兩個轉(zhuǎn)盤停止后指針?biāo)竻^(qū)域的數(shù)字都為偶數(shù)(如果指針恰好指在分格線上.那么重轉(zhuǎn)直到指針指向某一數(shù)字所在區(qū)域為止).則這個同學(xué)要表演唱歌節(jié)目.請求出這個同學(xué)表演唱歌節(jié)目的概率(要求用畫樹狀圖或列表方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年9月23日強臺風(fēng)“天兔”登錄深圳,伴隨著就是狂風(fēng)暴雨梧桐山山坡上有一棵與水平面垂直的大樹,臺風(fēng)過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示).已知山坡的坡角∠AEF=23°,量得樹干的傾斜角為∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=3m.

(1)求∠DAC的度數(shù);
(2)求這棵大樹折斷前的高度?(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)與墻MN平行且距離為0.8米,已知小汽車車門寬AO為1.2米,當(dāng)車門打開角度∠AOB為40°時,車門是否會碰到墻?請說明理由。(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。

(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè) , , ,請?zhí)剿? , 滿足的等量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,E為CD上一點,分別以EA,EB為折痕將兩個角(∠D,∠C)向內(nèi)折疊,點C,D恰好落在AB邊的點F處.若AD=2,BC=3,則EF的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點O出發(fā),向點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以 個單位/秒的速度勻速運動,連接PQ,設(shè)運動時間為t秒.

(1)求拋物線的解析式;
(2)當(dāng)t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當(dāng)EF∥PQ時,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2的正方形,點G是BC延長線上一點,連接AG,點E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F處.若△FDE的周長為5,△FCB的周長為17,則FC的長為

查看答案和解析>>

同步練習(xí)冊答案