如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連接AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:AB=AC;
(2)求證:DE為⊙O的切線;
(3)若⊙O的半徑為5,∠BAC=60°,求DE的長(zhǎng).
【考點(diǎn)】切線的判定;圓周角定理.
【專題】計(jì)算題;證明題.
【分析】(1)根據(jù)垂直平分線的判斷方法與性質(zhì)易得AD是BC的垂直平分線,故可得AB=AC;
(2)連接OD,由平行線的性質(zhì),易得OD⊥DE,且DE過(guò)圓周上一點(diǎn)D故DE為⊙O的切線;
(3)由AB=AC,∠BAC=60°知△ABC是等邊三角形,根據(jù)等邊三角形的性質(zhì),可得AB=BC=10,CD=BC=5;又∠C=60°,借助三角函數(shù)的定義,可得答案.
【解答】(1)證明:∵AB是⊙O的直徑,
∴∠ADB=90°;
∵BD=CD,
∴AD是BC的垂直平分線.
∴AB=AC.
(2)證明:連接OD,
∵點(diǎn)O、D分別是AB、BC的中點(diǎn),
∴OD∥AC.
∵DE⊥AC,
∴OD⊥DE.
∴DE為⊙O的切線.
(3)解:由AB=AC,∠BAC=60°知△ABC是等邊三角形,
∵⊙O的半徑為5,
∴AB=BC=10,CD=BC=5.
∵∠C=60°,
∴DE=CD•sin60°=.
【點(diǎn)評(píng)】本題考查切線的判定,線段相等的證明及線段長(zhǎng)度的求法,要求學(xué)生掌握常見的解題方法,并能結(jié)合圖形選擇簡(jiǎn)單的方法解題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,AB=AD=DC,∠B=60°,則∠C的度數(shù)為( )
A.60° B.30° C.35° D.40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
口袋內(nèi)裝有一些除顏色外完全相同的紅球、白球和黑球,從中摸出一球,摸出紅球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知關(guān)于x的方程x2﹣2(m+1)x+m2=0,
(1)當(dāng)m取什么值時(shí),原方程沒(méi)有實(shí)數(shù)根;
(2)對(duì)m選取一個(gè)合適的非零整數(shù),使原方程有兩個(gè)實(shí)數(shù)根,并求這兩個(gè)實(shí)數(shù)根的平方和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一元二次方程x2﹣4x+1=0配方后可變形為( 。
A.(x﹣2)2=5 B.(x+2)2=5 C.(x﹣2)2=3 D.(x+2)2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如果a、b是兩個(gè)不相等的實(shí)數(shù),且滿足a2﹣a=2,b2﹣b=2,那么代數(shù)式2a2+ab+2b﹣2015的值為( 。
A.2011 B.﹣2011 C.2015 D.﹣2015
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
數(shù)學(xué),,π,,0.中無(wú)理數(shù)的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com