【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,OD⊥AC,垂足為D點(diǎn),直線OD與⊙O相交于E,F兩點(diǎn),P是⊙O外一點(diǎn),P在直線OD上,連接PA,PB,PC,且滿足∠PCA=∠ABC
(1)求證:PA=PC;
(2)求證:PA是⊙O的切線;
(3)若BC=8,,求DE的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)DE=8.
【解析】
(1)根據(jù)垂徑定理可得AD=CD,得PD是AC的垂直平分線,可判斷出PA=PC;
(2)由PC=PA得出∠PAC=∠PCA,再判斷出∠ACB=90°,得出∠CAB+∠CBA=90°,再判斷出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出結(jié)論;
(2)根據(jù)AB和DF的比設(shè)AB=3a,DF=2a,先根據(jù)三角形中位線可得OD=4,從而得結(jié)論.
(1)證明∵OD⊥AC,
∴AD=CD,
∴PD是AC的垂直平分線,
∴PA=PC,
(2)證明:由(1)知:PA=PC,
∴∠PAC=∠PCA.
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°.
又∵∠PCA=∠ABC,
∴∠PCA+∠CAB=90°,
∴∠CAB+∠PAC=90°,即AB⊥PA,
∴PA是⊙O的切線;
(3)解:∵AD=CD,OA=OB,
∴OD∥BC,OD=BC==4,
∵,
設(shè)AB=3a,DF=2a,
∵AB=EF,
∴DE=3a﹣2a=a,
∴OD=4=﹣a,
a=8,
∴DE=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全球已經(jīng)進(jìn)入大數(shù)據(jù)時(shí)代,大數(shù)據(jù)(bigdata),是指數(shù)據(jù)規(guī)模巨大,類型多樣且信息傳播速度快的數(shù)據(jù)庫(kù)體系.大數(shù)據(jù)在推動(dòng)經(jīng)濟(jì)發(fā)展,改善公共服務(wù)等方面日益顯示出巨大的價(jià)值.為創(chuàng)建大數(shù)據(jù)應(yīng)用示范城市,我市某機(jī)構(gòu)針對(duì)市民最關(guān)心的四類生活信息進(jìn)行了民意調(diào)查(被調(diào)查者每人限選一項(xiàng)),下面是部分四類生活信息關(guān)注度統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)本次參與調(diào)查的人數(shù)是 ,扇形統(tǒng)計(jì)圖中D部分的圓心角的度數(shù)是 ;
(2)關(guān)注城市醫(yī)療信息的有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)寫出兩條你從統(tǒng)計(jì)圖中獲取的信息.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m>0),點(diǎn)D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在坐標(biāo)平面內(nèi),當(dāng)△ADE是等腰直角三角形時(shí),點(diǎn)E的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩班分別選5名同學(xué)組成代表隊(duì)參加學(xué)校組織的“國(guó)防知識(shí)”選拔賽,現(xiàn)根據(jù)成績(jī)(滿分10分)制作如圖統(tǒng)計(jì)圖和統(tǒng)計(jì)表(尚未完成)
甲、乙兩班代表隊(duì)成績(jī)統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | 8.5 | a | 0.7 |
乙班 | 8.5 | b | 10 | 1.6 |
請(qǐng)根據(jù)有關(guān)信息解決下列問(wèn)題:
(1)填空:a= ,b= ;
(2)學(xué)校預(yù)估如果平均分能達(dá)8.5分,在參加市團(tuán)體比賽中即可以獲獎(jiǎng),現(xiàn)應(yīng)選派 代表隊(duì)參加市比賽;(填“甲”或“乙”)
(3)現(xiàn)將從成績(jī)滿分的3個(gè)學(xué)生中隨機(jī)抽取2人參加市國(guó)防知識(shí)個(gè)人競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到甲,乙班各一個(gè)學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸相交于點(diǎn)A(3,0)和,與軸相交于點(diǎn).
(1)求的值和點(diǎn)的坐標(biāo);
(2)點(diǎn)D(x,y)是拋物線上一點(diǎn),若S△ABD= S△ABC,求點(diǎn)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ABCD,過(guò)點(diǎn)A作BC的垂線,垂足為E,∠BAE=30°,BC=2,AE=,則點(diǎn)B到直線AC的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,熒光屏上的甲、乙兩個(gè)光斑(可看作點(diǎn))分別從相距8cm的A,B兩點(diǎn)同時(shí)開(kāi)始沿線段AB運(yùn)動(dòng),運(yùn)動(dòng)工程中甲光斑與點(diǎn)A的距離S1(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖2,乙光斑與點(diǎn)B的距離S2(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖3,已知甲光斑全程的平均速度為1.5cm/s,且兩圖象中△P1O1Q1≌P2Q2O2,下列敘述正確的是( 。
A. 甲光斑從點(diǎn)A到點(diǎn)B的運(yùn)動(dòng)速度是從點(diǎn)B到點(diǎn)A的運(yùn)動(dòng)速度的4倍
B. 乙光斑從點(diǎn)A到B的運(yùn)動(dòng)速度小于1.5cm/s
C. 甲乙兩光斑全程的平均速度一樣
D. 甲乙兩光斑在運(yùn)動(dòng)過(guò)程中共相遇3次
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】哈市某中學(xué)為了豐富校園文化生活.校學(xué)生會(huì)決定舉辦演講、歌唱、繪畫、舞蹈四項(xiàng)比賽,要求每位學(xué)生都參加.且只能參加一項(xiàng)比賽.圍繞“你參賽的項(xiàng)目是什么?(只寫一項(xiàng))”的問(wèn)題,校學(xué)生會(huì)在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查。將調(diào)查問(wèn)卷適當(dāng)整理后繪制成如圖所示的不完整的條形統(tǒng)計(jì)圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為1:3.請(qǐng)你根據(jù)以上信息回答下列問(wèn)題:
(1)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(3)如果全校有680名學(xué)生,請(qǐng)你估計(jì)這680名學(xué)生中參加演講比賽的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)的經(jīng)濟(jì)總量已居世界第二,人民富裕了,有的家庭擁有多種車型.小紅家有A、B、C三種車型,已知3輛A型車的載重量與4輛B型車的載重量之和剛好等于2輛C型車的載重量;4輛B型車的載重量與1輛C型車的載重量之和剛好等于6輛A型車的載重量.現(xiàn)有一批貨物,原計(jì)劃用C型車10次可全部運(yùn)完,由于C型車另有運(yùn)輸任務(wù),現(xiàn)在安排A型車單獨(dú)裝運(yùn)12次,余下的貨物由B型車單獨(dú)裝運(yùn)剛好可以全部運(yùn)完,則B型車需單獨(dú)裝運(yùn)_____次(每輛車每次都滿載重量)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com