【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn).
(1)①畫(huà)出線段關(guān)于軸對(duì)稱(chēng)的線段,則點(diǎn)的坐標(biāo)為 ;
②將線段平移至,其中點(diǎn)與點(diǎn)對(duì)應(yīng),畫(huà)出線段并寫(xiě)出點(diǎn)的坐標(biāo);
(2)點(diǎn)在(1)中四邊形邊上,且是對(duì)角線上--動(dòng)點(diǎn),則的最小值為 .
【答案】(1)①;②畫(huà)出線段CD見(jiàn)解析,;(2)6.
【解析】
(1)①可知B和C是一組對(duì)應(yīng)點(diǎn),根據(jù)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相同即可得出C點(diǎn)坐標(biāo)同時(shí)畫(huà)線段AC;②根據(jù)點(diǎn)與點(diǎn)對(duì)應(yīng),確定平移方式,由點(diǎn)與點(diǎn)對(duì)應(yīng),即可寫(xiě)出D點(diǎn)坐標(biāo)同時(shí)畫(huà)出線段CD;
(2)根據(jù)B和C關(guān)于y軸對(duì)稱(chēng),的最小值為線段BM,根據(jù)勾股定理求出BM即可.
解:(1)①∵線段關(guān)于軸對(duì)稱(chēng)的線段,,
∴,
線段見(jiàn)圖1,
故答案為:;
②∵點(diǎn)與點(diǎn)對(duì)應(yīng),,,
∴平移方式為向下平移4單位,向右平移4單位,
∴的對(duì)應(yīng)點(diǎn)D點(diǎn)的坐標(biāo)為,
平移后的線段CD見(jiàn)圖1:
(2)如下圖2,
在△BCD中,
∵,
∴,∠BDC=90°,
∵B和C關(guān)于y軸對(duì)稱(chēng),N在y軸上,
∴,
當(dāng)B、M、N在同一條直線上時(shí),最短為BM,
此時(shí).
故答案為:6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E在BC上,點(diǎn)F在CD上,連接AE、AF、EF,∠EAF=45°,BE=3,CF=4,則正方形的邊長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無(wú)理數(shù),導(dǎo)致了第一次數(shù)學(xué)危機(jī).是無(wú)理數(shù)的證明如下:
假設(shè)是有理數(shù),那么它可以表示成(與是互質(zhì)的兩個(gè)正整數(shù)).于是,所以,.于是是偶數(shù),進(jìn)而是偶數(shù).從而可設(shè),所以,,于是可得也是偶數(shù).這與“與是互質(zhì)的兩個(gè)正整數(shù)”矛盾,從而可知“是有理數(shù)”的假設(shè)不成立,所以,是無(wú)理數(shù).這種證明“是無(wú)理數(shù)”的方法是( )
A.綜合法B.反證法C.舉反例法D.數(shù)學(xué)歸納法
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=BC,CE為△ABC的中線,BD為AC邊上的高,BF平分∠CBD交CE于點(diǎn)G,連接AG交BD于點(diǎn)M,若∠AFG=63°,則∠AMB的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,陽(yáng)光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請(qǐng)你在圖中畫(huà)出旗桿在同一時(shí)刻陽(yáng)光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請(qǐng)求出旗桿的影子落在墻上的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察、思考、應(yīng)用:
.
反之,
(1)仿上例,化簡(jiǎn);
(2)若請(qǐng)用含的式子分別表示和.
(3)已知菱形的邊長(zhǎng)為,則菱形對(duì)角線的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對(duì)知識(shí)進(jìn)行歸納和整理是完善知識(shí)結(jié)構(gòu)的重要方法.善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,把相關(guān)知識(shí)歸納整理如下:
(1)請(qǐng)你根據(jù)以上方框中的內(nèi)容在下面數(shù)字序號(hào)后寫(xiě)出相應(yīng)的結(jié)論:
① ;② ;③ ;④ .
(2)如果點(diǎn)C的坐標(biāo)為(1,3) ,求不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中, 為對(duì)角線, 的交點(diǎn),經(jīng)過(guò)點(diǎn)和點(diǎn)作⊙,分別交, 于點(diǎn), .已知正方形邊長(zhǎng)為,⊙的半徑為,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:(1)EH=FH;
(2)∠CAB=2∠CDH.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com