【題目】如圖1,在中,,,把一塊含角的三角板的直角頂點(diǎn)放在的中點(diǎn)上(直角三角板的短直角邊為,長直角邊為),點(diǎn)上,點(diǎn).

(1)求重疊部分的面積;

(2)如圖2,將直角三角板點(diǎn)按順時(shí)針方向旋轉(zhuǎn)30度,于點(diǎn),于點(diǎn).

①請(qǐng)說明:;

②在此條件下,與直角三角板重疊部分的面積會(huì)發(fā)生變化嗎?請(qǐng)說明理由,并求出重疊部分的面積.

(3)如圖3,將直角三角板點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(),于點(diǎn)于點(diǎn),則的結(jié)論仍成立嗎?重疊部分的面積會(huì)變嗎?(請(qǐng)直接寫出結(jié)論,不需要說明理由)

【答案】(1)SBCD=;(2)①證明見解析;②重疊部分的面積不變?yōu)?/span>;(3)DMDN的結(jié)論仍成立,重疊部分面積不會(huì)變.

【解析】

1)重疊部分△BCD是一個(gè)等腰直角三角形,求出其直角邊,即可求解;

2)①連接BD,先證得BDCD,∠C=∠NBD45°,進(jìn)而求出△CDM≌△BDN,即可得到DMDN;②利用①中的結(jié)論△CDM≌△BDN即可得出答案;

3)證明過程類似(2),根據(jù)(2)中的結(jié)論,可以直接寫出.

解:(1)ABBC,AC2,DAC的中點(diǎn),∠ABC90°,

∴∠BCD=∠A=∠CBD45°,BDAC.

CDBDAC1.

SBCDCD·BD×1×1.

(2)①連接BD

ABBC,DAC的中點(diǎn),∠ABC90°,

∴∠C=∠A=∠CBD=∠ABD45°,

BDCD,∠C=∠NBD45°,

又∵直角三角板DEFD點(diǎn)按順時(shí)針方向旋轉(zhuǎn)30度,

∴∠CDM=∠BDN=30°,

∴△CDM≌△BDN(ASA).

DMDN.

②由①知△CDM≌△BDN,

S四邊形BNDMSBCD,

即此條件下重疊部分的面積不變?yōu)?/span>.

(3)DMDN的結(jié)論仍成立,重疊部分面積不會(huì)變.(證明過程類似(2))

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并完成任務(wù):

中國古代三國時(shí)期吳國的數(shù)學(xué)家趙爽最早對(duì)勾股定理作出理論證明.他創(chuàng)制了一幅勾股圓方圖”(如圖l),用數(shù)形結(jié)合的方法,給出了勾股定理的詳細(xì)證明.在這幅勾股圓方圖中,以弦為邊長得到的正方形是由個(gè)全等的直角三角形再加上中間的那個(gè)小正方形組成的.每個(gè)直角三角形的面積為;中間的小正方形邊長為,面積為.于是便得到式子:.趙爽的這個(gè)證明可謂別具匠心,極富創(chuàng)新意識(shí).他用幾何圖形的截、割、拼、補(bǔ)來證明代數(shù)式之間的恒等關(guān)系,既具嚴(yán)密性,又具直觀性,為中國古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨(dú)特風(fēng)格樹立了一個(gè)典范.如圖2,是趙爽弦圖,其中、是四個(gè)全等的直角三角形,四邊形都是正方形,根據(jù)這個(gè)圖形的面積關(guān)系,可以證明勾股定理.設(shè),,,取,.

任務(wù):

(1)填空:正方形的面積為______,四個(gè)直角三角形的面積和為______;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc(a≠0)x軸交于點(diǎn)(x1,0)(x2,0),其中x1x2,方程ax2bxca0的兩根為m,n(mn),則下列判斷正確的是(  )

A. mnx1x2 B. mx1x2n C. x1x2mn D. b24ac≥0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位要制作一批宣傳材料.甲公司提出:每份材料收費(fèi)1元,另收取制版費(fèi)600元;乙公司提出:每份材料收費(fèi)1.2元,不收取制版費(fèi).

(1)設(shè)制作份宣傳材料,甲公司收費(fèi)元,乙公司收費(fèi)元,請(qǐng)分別寫出,的關(guān)系式;

(2)該單位要制作宣傳材料10004500(10004500)份,選擇哪家公司比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,完成系列問題:

(1)將點(diǎn)B向右移動(dòng)六個(gè)單位長度到點(diǎn)D,在數(shù)軸上表示出點(diǎn)D.

(2)在數(shù)軸上找到點(diǎn)E,使點(diǎn)EA、C兩點(diǎn)的距離相等.并在數(shù)軸上標(biāo)出點(diǎn)E表示的數(shù).

(3)在數(shù)軸上有一點(diǎn)F,滿足點(diǎn)F到點(diǎn)A與點(diǎn)F到點(diǎn)C的距離和是9,則點(diǎn)F表示的數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形與矩形如圖放置,點(diǎn)共線,共線,連接,取的中點(diǎn),連接,若,,則

A. B. C. 2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)從學(xué)生入學(xué)開始就積極開展環(huán)保教育,半學(xué)期后隨機(jī)對(duì)部分學(xué)生的環(huán)保習(xí)慣養(yǎng)成情況進(jìn)行了問卷調(diào)查,問卷中的環(huán)保習(xí)慣有:①隨手關(guān)燈;②充電后及時(shí)拔充電器插頭;③生活用水合理重復(fù)利用;④不用或少用一次性餐具;⑤少用塑料袋多用環(huán)保袋;⑥綠色出行,同學(xué)勾選出自己已經(jīng)養(yǎng)成的環(huán)保習(xí)慣,學(xué)校將結(jié)果繪成了如圖所示的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)求在這次調(diào)查中,一共抽查了多少名學(xué)生?

2通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖.

3)已知全校共有學(xué)生1200人,請(qǐng)估計(jì)全校所有學(xué)生中已經(jīng)養(yǎng)成3個(gè)或3個(gè)以上環(huán)保習(xí)慣的同學(xué)共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400已知乙種商品每件進(jìn)價(jià)比甲種商品每件進(jìn)價(jià)多8元,且購進(jìn)的甲、乙兩種商品件數(shù)相同.

求甲、乙兩種商品的每件進(jìn)價(jià);

該商場將購進(jìn)的甲、乙兩種商品進(jìn)行銷售,甲種商品的銷售單價(jià)為60元,乙種商品的銷售單價(jià)為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價(jià)的七折銷售;乙種商品銷售單價(jià)保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價(jià)至少銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=2,BC=6,點(diǎn)E從點(diǎn)D出發(fā),沿DA方向以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)F從點(diǎn)B出發(fā),沿射線AB以每秒3個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),E、F兩點(diǎn)停止運(yùn)動(dòng).連接BD,過點(diǎn)EEHBD,垂足為H,連接EF,交BD于點(diǎn)G,交BC于點(diǎn)M,連接CF. 給出下列結(jié)論:①△CDE∽△CBF;②∠DBC=EFC; ;GH的值為定值;上述結(jié)論中正確的個(gè)數(shù)為

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案