【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長(zhǎng).

【答案】
(1)證明:∵AB是⊙O的直徑,

∴∠ACB=90°,

∴∠BAC+∠B=90°.

又∵OP∥BC,

∴∠AOP=∠B,

∴∠BAC+∠AOP=90°.

∵∠P=∠BAC.

∴∠P+∠AOP=90°,

∴由三角形內(nèi)角和定理知∠PAO=90°,即OA⊥AP.

又∵OA是的⊙O的半徑,

∴PA為⊙O的切線


(2)解:由(1)知,∠PAO=90°.∵OB=5,

∴OA=OB=5.

又∵OP= ,

∴在直角△APO中,根據(jù)勾股定理知PA= = ,

由(1)知,∠ACB=∠PAO=90°.

∵∠BAC=∠P,

∴△ABC∽△POA,

=

= ,

解得AC=8.即AC的長(zhǎng)度為8.


【解析】(1)欲證明PA為⊙O的切線,只需證明OA⊥AP;(2)通過相似三角形△ABC∽△PAO的對(duì)應(yīng)邊成比例來求線段AC的長(zhǎng)度.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和切線的判定定理的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,Rt△ABC中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長(zhǎng)線上一點(diǎn),且BD=1,連接DA,點(diǎn)P是射線DA上的動(dòng)點(diǎn).
(1)求證DA是⊙O的切線;
(2)DP的長(zhǎng)度為多少時(shí),∠BPC的度數(shù)最大,最大度數(shù)是多少?請(qǐng)說明理由.
(3)P運(yùn)動(dòng)的過程中,(PB+PC)的值能否達(dá)到最小,若能,求出這個(gè)最小值,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:
社會(huì)消費(fèi)品零售總額是指批發(fā)和零售業(yè),住宿和餐飲業(yè)以及其他行業(yè)直接售給城鄉(xiāng)居民和社會(huì)集團(tuán)的消費(fèi)品零售額,在各類與消費(fèi)有關(guān)的統(tǒng)計(jì)數(shù)據(jù)中,社會(huì)消費(fèi)品零售總額是表現(xiàn)國(guó)內(nèi)消費(fèi)需求最直接的數(shù)據(jù).
2012年,北京市全年實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額7702.8億元,比上一年增長(zhǎng)11.6%,2013年,全年實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額8375.1億元,比上一年增長(zhǎng)8.7%,2014年,全年實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額9098.1億元,比上一年增長(zhǎng)8.6%,2015年,全年實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額10338億元,比上一年增長(zhǎng)7.3%.
2016年,北京市實(shí)現(xiàn)市場(chǎng)總消費(fèi)19926.2億元,比上一年增長(zhǎng)了8.1%,其中實(shí)現(xiàn)服務(wù)性消費(fèi)8921.1億元,增長(zhǎng)10.1%;實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額11005.1億元,比上一年增長(zhǎng)了6.5%.
根據(jù)以上材料解答下列問題:
(1)補(bǔ)全統(tǒng)計(jì)表:
2012﹣2016年北京市社會(huì)消費(fèi)品零售總額統(tǒng)計(jì)表

年份

2012年

2013年

2014年

2015年

2016年

社會(huì)消費(fèi)品零售總額(單位:億元)


(2)選擇適當(dāng)?shù)慕y(tǒng)計(jì)圖將2012﹣2016年北京市社會(huì)消費(fèi)品零售總額比上一年的增長(zhǎng)率表示出來,并在圖中表明相應(yīng)數(shù)據(jù);
(3)根據(jù)以上信息,估計(jì)2017年北京市社會(huì)消費(fèi)品零售總額比上一年的增長(zhǎng)率約為 , 你的預(yù)估理由是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在AB邊上,點(diǎn)F在BC邊的延長(zhǎng)線上,且AE=CF
(1)求證:△AED≌△CFD;
(2)將△AED按逆時(shí)針方向至少旋轉(zhuǎn)多少度才能與△CFD重合,旋轉(zhuǎn)中心是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正三角形的一邊平行于x軸,一頂點(diǎn)在y軸上.從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8,…,頂點(diǎn)依次用A1、A2、A3、A4…表示,其中A1A2與x軸、底邊A1A2與A4A5、A4A5與A7A8、…均相距一個(gè)單位,則頂點(diǎn)A3的坐標(biāo)是 , A92的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我國(guó)漁政船在釣魚島海域C處測(cè)得釣魚島A在漁政船的北偏西30°的方向上,隨后漁政船以80海里/小時(shí)的速度向北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得釣魚島A在漁政船的北偏西60°的方向上,求此時(shí)漁政船距釣魚島A的距離AB.(結(jié)果保留小數(shù)點(diǎn)后一位,其中 =1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的兩個(gè)根,則實(shí)數(shù)x1 , x2 , a,b的大小關(guān)系為(
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某種商品每件成本為20元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時(shí)間t(天)的關(guān)系如下表:

時(shí)間t(天)

1

3

5

10

36

日銷售量m(件)

94

90

86

76

24

未來40天內(nèi),前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y1= t+25(1≤t≤20且t為整數(shù)),后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y2=﹣ t+40(21≤t≤40且t為整數(shù)).
下面我們就來研究銷售這種商品的有關(guān)問題:
(1)認(rèn)真分析上表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的m(件)與t(天)之間的表達(dá)式;
(2)請(qǐng)預(yù)測(cè)未來40天中哪一天的日銷售利潤(rùn)最大,最大日銷售利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩條輪船同時(shí)從港口A出發(fā),甲輪船以每小時(shí)30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時(shí)15海里的速度沿著正東方向行進(jìn),1小時(shí)后,甲船接到命令要與乙船會(huì)合,于是甲船改變了行進(jìn)的速度,沿著東南方向航行,結(jié)果在小島C處與乙船相遇.假設(shè)乙船的速度和航向保持不變,求:

(1)港口A與小島C之間的距離;
(2)甲輪船后來的速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案