【題目】如圖(1),,,垂足為A,B,,點在線段上以每秒2的速度由點向點運動,同時點在線段上由點向點運動.它們運動的時間為().
(1) , ;(用的代數(shù)式表示)
(2)如點的運動速度與點的運動速度相等,當時,與是否全等,并判斷此時線段和線段的位置關(guān)系,請分別說明理由;
(3)如圖(2),將圖(1)中的“,”,改為“”,其他條件不變.設點的運動速度為,是否存在有理數(shù),與是否全等?若存在,求出相應的x、t的值;若不存在,請說明理由.
【答案】(1)2t,8-2t;(2)△ADP與△BPQ全等,線段PD與線段PQ垂直,理由見解析;(3)存在或,使得△ADP與△BPQ全等.
【解析】
(1)根據(jù)題意直接可得答案.
(2)由t=1可得△ACP和△BPQ中各邊的長,由SAS推出△ACP≌△BPQ,進而根據(jù)全等三角形性質(zhì)得∠APC+∠BPQ=90°,據(jù)此判斷線段PC和PQ的位置關(guān)系;
(3)假設△ACP≌△BPQ,用t和x表示出邊長,根據(jù)對應邊相等解出t和x的值;
再假設△ACP≌△BQP,用上步的方法求解,注意此時的對應邊和上步不一樣.
(1)由題意得:2t,8-2t.
(2)△ADP與△BPQ全等,線段PD與線段PQ垂直.
理由如下:
當t=1時,AP=BQ=2,BP=AD=6,
又∠A=∠B=90°,
在△ADP和△BPQ中,
,∴△ADP△BPQ(SAS),∴∠ADP=∠BPQ,∴∠APD+∠BPQ=∠APD+∠ADP=90°,∴∠DPQ=90°,即線段PD與線段PQ垂直.
(3)①若△ADP△BPQ,
則AD=BP,,AP=BQ,
則,
解得;
②若△ADP△BQP,
則AD=BQ,AP=BP,
則,
解得:;
綜上所述:存在或,使得△ADP與△BPQ全等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC為⊙O的直徑,B為⊙O上一點,∠ACB=30°,延長CB至點D,使得CB=BD,過點D作DE⊥AC,垂足E在CA的延長線上,連接BE.
(1)求證:BE是⊙O的切線;
(2)當BE=3時,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)的對稱軸為.點在直線上.
(1)求, 的值;
(2)若點在二次函數(shù)上,求的值;
(3)當二次函數(shù)與直線相交于兩點時,設左側(cè)的交點為,若,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.
根據(jù)圖示填寫下表:
平均數(shù)分 | 中位數(shù)分 | 眾數(shù)分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
結(jié)合兩校成績的平均數(shù)和中位數(shù),分析哪個學校的決賽成績較好;
計算兩校決賽成績的方差,并判斷哪個學校代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是反比例函數(shù)y=的圖象的一支.
(1)求m的取值范圍,并在圖中畫出另一支的圖象;
(2)若m=-1,P(a,3)是雙曲線上的一點,PH⊥y軸于H,將線段OP向右平移3PH的長度至O′P′,此時P的對應點P′恰好在另一條雙曲線y=的圖象上,則平移中線段OP掃過的面積為 ,k= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE交OD于點F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為8,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=﹣,下列結(jié)論:①圖象必經(jīng)過點(﹣3,1);②圖象在第二,四象限內(nèi);③y隨x的增大而增大;④當x>﹣1時,y>3.其中錯誤的結(jié)論有( )
A. ①④ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點,,點C是直線AB上異于點B的任一點,現(xiàn)以BC為一邊在AB右側(cè)作正方形BCDE,射線OC與直線DE交于點P,若點C的橫坐標為m.
求直線AB的函數(shù)表達式.
若點C在第一象限,且點C為OP的中點,求m的值.
若點C為OP的三等分點即點C分OP成1:2的兩條線段,請直接寫出點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com