【題目】某市政府為了扶貧,鼓勵當?shù)剞r(nóng)民養(yǎng)殖小龍蝦,如圖:張叔叔順著圩梗AN、AM(AN=3m,AM=10m,∠MAN=45°),用8m長的漁網(wǎng)搭建了一個養(yǎng)殖水域(即四邊形ABCD),圩梗邊不需要漁網(wǎng),AB∥CD,∠C=90°.設BC=xm,四邊形ABCD面積為S(m2).
(1)求出S關(guān)于x的函數(shù)表達式及x的取值范圍;
(2)x為何值時,圍成的養(yǎng)殖水域面積最大?最大面積是多少?
【答案】(1)S=﹣x2+8x,0<x≤3;(2)當x=3時時,圍成的養(yǎng)殖水域面積最大,最大面積是 .
【解析】
(1)過D作DE⊥AB于E,根據(jù)矩形的性質(zhì)得到DE=x,求得AE=x,根據(jù)三角形和矩形的面積公式即可得到結(jié)論;
(2)根據(jù)二次函數(shù)的性質(zhì),即可得到結(jié)論.
(1)過D作DE⊥AB于E,
∵BC=xm,
∴DE=xm,
∵∠A=45°,
∴AE=xm,
∴S=S△AED+S矩形DEBC=x2+(8﹣x)x=﹣x2+8x,
∵AB=AE+EB=x+(8﹣x)=8m,
∴B點為定點,
∴DE最大為3m,
∴0<x≤3;
(2)∵S=﹣x2+8x=﹣(x﹣8)2+32,
∴當x<8時,S隨x的增大而增大,
∵0<x≤3,
∴當x=3時,S取得最大值,S最大=﹣×(3﹣8)2+32=,
答:當x=3m時,圍成的養(yǎng)殖水域面積最大,最大面積是.
科目:初中數(shù)學 來源: 題型:
【題目】某市為了解九年級學生的身體素質(zhì)測試情況,隨機抽取了該市九年級部分學生的身體素質(zhì)測試成績作為樣本,按(優(yōu)秀),(良好),(合格),(不合格)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:
(1)此次共調(diào)查了多少名學生?
(2)將條形統(tǒng)計圖補充完整,并計算扇形統(tǒng)計圖中“”部分所對應的圓心角的度數(shù).
(3)該市九年級共有9000名學生參加了身體素質(zhì)測試,估計測試成績在良好以上(含良好)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高,某公司根據(jù)市場需求代理A,B兩種型號的凈水器,每臺A型凈水器比每臺B型凈水器進價多200元,用5萬元購進A型凈水器與用4.5萬元購進B型凈水器的數(shù)量相等
(1)求每臺A型、B型凈水器的進價各是多少元?
(2)該公司計劃購進A,B兩種型號的凈水器共50臺進行試銷,其中A型凈水器為x臺,購買資金不超過9.8萬元,試銷時A型凈水器每臺售價2500元,B型凈水器每臺售價2180元,公司決定從銷售A型凈水器的利潤中按每臺捐獻a元作為公司幫扶貧困村飲水改造資金.若公司售完50臺凈水器并捐獻扶貧資金后獲得的最大利潤不低于20200元但不超過23000元,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學興趣小組向利用所學的知識了解某廣告牌的高度,已知CD=2m,經(jīng)測量,得到其它數(shù)據(jù)如圖所示,其中∠CAH=30°,∠DBH=60°,AB=10m,請你根據(jù)以上數(shù)據(jù)計算GH的長(要求計算結(jié)果保留根號,不取近似值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為的正方形ABCD中,點E,F是對角線AC的三等分點,點P在正方形的邊上,則滿足PE+PF=的點P的個數(shù)是( )
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1,l2,過點(1,0)作x軸的垂線交l1于點A1,過點A1作y軸的垂線交l2于點A2,過點A2作x軸的垂線交l1于點A3,過點A3作y軸的垂線交l2于點A4,…,依次進行下去,則點A2019的坐標為( )
A.(21009,21010)B.(﹣21009,21010)
C.(21009,﹣21010)D.(﹣21009,﹣21010)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,∠C=52°,BE為AC邊上的中線,AD平分∠BAC,交BC邊于點D,過點B作BF⊥AD,垂足為F,則∠EBF的度數(shù)為( )
A.19°B.33°C.34°D.43°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在平面直角坐標系xOy中,點A在x軸負半軸上,點B在y軸正半軸上,OA=OB,函數(shù)的圖象與線段AB交于M點,且AM=BM.
(1)求點M的坐標;
(2)求直線AB的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com