【題目】在同一坐標(biāo)系中,一次函數(shù) yax+b 與二次函數(shù) yax+b 的大致圖象為( )

A. B. C. D.

【答案】B

【解析】

可先根據(jù)一次函數(shù)的圖象判斷 ab 的符號,再判斷二次函數(shù)圖象與實(shí)際是否相符,判斷正誤.

A、由一次函數(shù) yax+b 的圖象可得:a0,此時(shí)二次函數(shù) yax2+b 的圖象應(yīng)該開口向上,故 A 錯(cuò)誤;

B、由一次函數(shù) yax+b 的圖象可得:a0b0,此時(shí)二次函數(shù) yax2+b 的圖象應(yīng)該開口向下,頂點(diǎn)的縱坐標(biāo)大于零,故 B 正確;

C、由一次函數(shù) yax+b 的圖象可得:a0,b0,此時(shí)二次函數(shù) yax2+b 的圖象應(yīng)該開口向下,故 C 錯(cuò)誤;

D、由一次函數(shù) yax+b 的圖象可得:a0,b0,此時(shí)二次函數(shù) yax2+b 的圖象應(yīng)該開口向下,故 D 錯(cuò)誤;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為6,點(diǎn)A,B,C為⊙O上三點(diǎn),BA平分∠OBC,過點(diǎn)AADBCBC延長線于點(diǎn)D.

(1)求證:AD是⊙O的切線;

(2)當(dāng)sinOBC=時(shí),求BC的長;

(3)連結(jié)AC,當(dāng)ACOB時(shí),求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組借助無人飛機(jī)航拍校園.如圖,無人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°B處的仰角為30°.已知無人飛機(jī)的飛行速度為4/秒,求這架無人飛機(jī)的飛行高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊BC延長線上一點(diǎn),聯(lián)結(jié)DE,過頂點(diǎn)BBFDE,垂足為F,BF交邊DC于點(diǎn)G

1)求證:GDAB=DFBG;

2)聯(lián)結(jié)CF,求證:∠CFB=45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).

(1)求yx之間的函數(shù)關(guān)系式;

(2)直接寫出當(dāng)x>0時(shí),不等式x+b的解集;

(3)若點(diǎn)Px軸上,連接APABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知為⊙的直徑,切⊙點(diǎn),弦點(diǎn),連結(jié).

(1)探索滿足什么條件時(shí),有,并加以證明.

(2)當(dāng),,求面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1y=﹣x與反比例函數(shù)y的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2;

1)求反比例函數(shù)的表達(dá)式;

2)根據(jù)圖象直接寫出﹣x的解集;

3)將直線l1y=- x沿y向上平移后的直線l2與反比例函數(shù)y在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們經(jīng)濟(jì)收入的不斷提高,汽車已越來越多地進(jìn)入到各個(gè)家庭.某大型超市為緩解停車難問題,建筑設(shè)計(jì)師提供了樓頂停車場的設(shè)計(jì)示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標(biāo)志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點(diǎn)B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):1.4141.732

查看答案和解析>>

同步練習(xí)冊答案