【題目】如圖,在平面直角坐標(biāo)系中,直線l1y=﹣x與反比例函數(shù)y的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2;

1)求反比例函數(shù)的表達(dá)式;

2)根據(jù)圖象直接寫出﹣x的解集;

3)將直線l1y=- x沿y向上平移后的直線l2與反比例函數(shù)y在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

【答案】(1) y=﹣;(2) x<﹣4 0x4;(3) y=-.

【解析】

(1)直線l1:y= - x經(jīng)過(guò)點(diǎn)A,且A點(diǎn)的縱坐標(biāo)是2,可得A(-4,2),代入反比例函數(shù)解析式可得k的值;(2)根據(jù)圖象得到點(diǎn)B的坐標(biāo),進(jìn)而直接得到﹣ x> 的解集即可;(3)設(shè)平移后的直線 x 軸交于點(diǎn) D,連接 AD,BD,由平行線的性質(zhì)可得出SABC=SABF,即可得出關(guān)于OD的一元一次方程,解方程即可得出結(jié)論.

(1)∵直線 l1:y=﹣x 經(jīng)過(guò)點(diǎn) A,A 點(diǎn)的縱坐標(biāo)是 2,

∴當(dāng) y=2 時(shí),x=﹣4,

A(﹣4,2),

∵反比例函數(shù) y=的圖象經(jīng)過(guò)點(diǎn) A,

k=﹣4×2=﹣8,

∴反比例函數(shù)的表達(dá)式為 y=﹣

(2)∵直線 l1:y=﹣x 與反比例函數(shù) y=的圖象交于 A,B 兩點(diǎn),

B(4,﹣2),

∴不等式﹣ x> 的解集為 x<﹣4 0<x<4;

(3)如圖,設(shè)平移后的直線 x 軸交于點(diǎn) D,連接 AD,BD,

CDAB,

∴△ABC 的面積與ABD 的面積相等,

∵△ABC 的面積為 30,

SAOD+SBOD=30,即 OD(|yA|+|yB|)=30,

×OD×4=30,

OD=15,

D(15,0),

設(shè)平移后的直線 的函數(shù)表達(dá)式為 y=﹣x+b, D(15,0)代入,可得 0=﹣×15+b,

解得 b=

∴平移后的直線 的函數(shù)表達(dá)式為 y=-.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,2),B(3,2),連接AB. 若對(duì)于平面內(nèi)一點(diǎn)P,線段AB上都存在點(diǎn)Q,使得PQ≤1,則稱點(diǎn)P是線段AB的“臨近點(diǎn)”.

(1)在點(diǎn)C(0,2),D(2,),E(4,1)中,線段AB的“臨近點(diǎn)”是__________;

(2)若點(diǎn)M(m,n)在直線上,且是線段AB的“臨近點(diǎn)”,求m的取值范圍;

(3)若直線上存在線段AB的“臨近點(diǎn)”,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC是等邊三角形,點(diǎn)D是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過(guò)點(diǎn)E作BC的平行線,分別交射線AB、AC于點(diǎn)F、G,連接BE.

(1) 如圖1,當(dāng)點(diǎn)D在線段BC上時(shí):

①求證:△AEB≌△ADC;②求證:四邊形BCGE是平行四邊形;

(2)如圖2,當(dāng)點(diǎn)D在BC的延長(zhǎng)線上,且CD=BC時(shí),試判斷四邊形BCGE是什么特殊的四邊形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如下所示,下列5個(gè)結(jié)論:①;;;(的實(shí)數(shù)),其中正確的結(jié)論有幾個(gè)?

A. ①②③ B. ②③④ C. ②③⑤ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax+2)(x-4)(a為常數(shù),且a0)與x軸從左至右依次交于AB兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線y=-x+b與拋物線的另一交點(diǎn)為D,且點(diǎn)D的橫坐標(biāo)為-5

1)求拋物線的函數(shù)表達(dá)式;

2P為直線BD下方的拋物線上的一點(diǎn),連接PD、PB,求△PBD面積的最大值;

3)設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,一動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個(gè)單位的速度運(yùn)動(dòng)到F,再沿線段FD以每秒2個(gè)單位的速度運(yùn)動(dòng)到D后停止,當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)過(guò)程中用時(shí)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB4cm,點(diǎn)E、F同時(shí)從C點(diǎn)出發(fā),以1cm/s的速度分別沿CBBA、CDDA運(yùn)動(dòng),到點(diǎn)A時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),△AEF的面積為S(cm2),則S(cm2)t(s)的函數(shù)關(guān)系可用圖象表示為( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問(wèn)題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來(lái)得到的四邊形EFGH是平行四邊形嗎?

小敏在思考問(wèn)題時(shí),有如下思路:連接AC.

結(jié)合小敏的思路作答

(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說(shuō)明理由,參考小敏思考問(wèn)題方法解決一下問(wèn)題

(2)如圖2,在(1)的條件下,若連接AC,BD.

①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫出結(jié)論并證明;

②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,D是邊BC的中點(diǎn).

1如圖1,求證:△ABD和△ACD的面積相等;

如圖2,延長(zhǎng)ADE,使DE=AD,連結(jié)CE,求證:AB=EC

2)當(dāng)∠BAC=90°時(shí),可以結(jié)合利用以上各題的結(jié)論,解決下列問(wèn)題:

求證:ADBC(即:直角三角形斜邊上的中線等于斜邊的一半);

已知BC=4,將△ABD沿AD所在直線翻折,得到△ADB',若△ADB'與△ABC重合部分的面積等于△ABC面積的,請(qǐng)畫出圖形(草圖)并求出AC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形 OABC 是矩形,點(diǎn) B 的坐標(biāo)為(4,3).

(1)直接寫出AC兩點(diǎn)的坐標(biāo);

(2)平行于對(duì)角線AC的直線 m 從原點(diǎn)O出發(fā),沿 x 軸正方向以每秒 1 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)直線 m 與矩形 OABC 的兩邊分別交于點(diǎn)M、N,設(shè)直線m運(yùn)動(dòng)的時(shí)間為t(秒).

MNAC,求 t 的值;

設(shè)OMN 的面積為S,當(dāng) t 為何值時(shí),S=.

查看答案和解析>>

同步練習(xí)冊(cè)答案