【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AC的垂線(xiàn)交線(xiàn)段AB(如圖1)或線(xiàn)段AB的延長(zhǎng)線(xiàn)(如圖2)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線(xiàn)段AB上時(shí),求證:△APQ∽△ABC;
(2)當(dāng)△PQB為等腰三角形時(shí),求AP的長(zhǎng).
【答案】解:(1)證明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C。
在△APQ與△ABC中,∵∠APQ=∠C,∠A=∠A,
∴△APQ∽△ABC。
(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5。
∵∠BPQ為鈍角,∴當(dāng)△PQB為等腰三角形時(shí),只可能是PB=PQ。
(I)當(dāng)點(diǎn)P在線(xiàn)段AB上時(shí),如題圖1所示,
由(1)可知,△APQ∽△ABC,
∴,即,解得:。
∴。
(II)當(dāng)點(diǎn)P在線(xiàn)段AB的延長(zhǎng)線(xiàn)上時(shí),如題圖2所示,
∵BP=BQ,∴∠BQP=∠P。
∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A。∴BQ=AB。
∴AB=BP,點(diǎn)B為線(xiàn)段AB中點(diǎn)。
∴AP=2AB=2×3=6。
綜上所述,當(dāng)△PQB為等腰三角形時(shí),AP的長(zhǎng)為或6。
【解析】
試題(1)由兩對(duì)角相等(∠APQ=∠C,∠A=∠A),證明△APQ∽△ABC。
(2)當(dāng)△PQB為等腰三角形時(shí),有兩種情況,需要分類(lèi)討論.
(I)當(dāng)點(diǎn)P在線(xiàn)段AB上時(shí),如題圖1所示.由三角形相似(△APQ∽△ABC)關(guān)系計(jì)算AP的長(zhǎng);
(II)當(dāng)點(diǎn)P在線(xiàn)段AB的延長(zhǎng)線(xiàn)上時(shí),如題圖2所示.利用角之間的關(guān)系,證明點(diǎn)B為線(xiàn)段AP的中點(diǎn),從而可以求出AP。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的邊AB為直徑畫(huà)⊙O,交AC于點(diǎn)D,半徑OE∥BD,連接BE,DE,BD,設(shè)BE交AC于點(diǎn)F,若∠DEB=∠DBC.
(1)求證:BC是⊙O的切線(xiàn);
(2)若BF=BC=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB和DE是直立在地面上的兩根立柱,AB=5 m,某一時(shí)刻AB在陽(yáng)光下的投影BC=2 m.
(1)請(qǐng)你畫(huà)出此時(shí)DE在陽(yáng)光下的投影;
(2)在測(cè)量AB的投影長(zhǎng)時(shí),同時(shí)測(cè)量出DE在陽(yáng)光下的投影長(zhǎng)為5 m,請(qǐng)你計(jì)算DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,,那么成立嗎?為什么?下面是小麗同學(xué)進(jìn)行的推理,請(qǐng)你將小麗同學(xué)的推理過(guò)程補(bǔ)充完整.
解:成立,理由如下:
(已知)
① (同旁?xún)?nèi)角互補(bǔ),兩條直線(xiàn)平行)
(② )
又(已知),(等量代換)
(③ )
(④ ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小聰和小明沿同一條路同時(shí)從學(xué)校出發(fā)到學(xué)校圖書(shū)館查閱資料,學(xué)校與圖書(shū)館的路程是千米,小聰騎自行車(chē),小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)圖書(shū)館,圖中折線(xiàn)和線(xiàn)段分別表示兩人離學(xué)校的路程(千米)與所經(jīng)過(guò)的時(shí)間(分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖象回答下列問(wèn)題:
(1)小聰在圖書(shū)館查閱資料的時(shí)間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請(qǐng)你求出小明離開(kāi)學(xué)校的路程(千米)與所經(jīng)過(guò)的時(shí)間(分鐘)之間的函數(shù)關(guān)系;
(3)求線(xiàn)段的函數(shù)關(guān)系式;
(4)當(dāng)小聰與小明迎面相遇時(shí),他們離學(xué)校的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為,連接AC、BD交于點(diǎn)O,CE平分∠ACD交BD于點(diǎn)E,
(1)求DE的長(zhǎng);
(2)過(guò)點(diǎn)EF作EF⊥CE,交AB于點(diǎn)F,求BF的長(zhǎng);
(3)過(guò)點(diǎn)E作EG⊥CE,交CD于點(diǎn)G,求DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從寧?h到某市,可乘坐普通列車(chē)或高鐵,已知高鐵的行駛路程與普通列車(chē)的行駛路程之和是920千米,而普通列車(chē)的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車(chē)的行駛路程;
(2)若高鐵的平均速度(千米/時(shí))是普通列車(chē)的平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車(chē)所需時(shí)間縮短3小時(shí),求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)(a≠0)的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,點(diǎn)B的坐標(biāo)為(3,0),頂點(diǎn)C的坐標(biāo)為(1,4).
(1)求二次函數(shù)的解析式和直線(xiàn)BD的解析式;
(2)點(diǎn)P是直線(xiàn)BD上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn),交拋物線(xiàn)于點(diǎn)M,當(dāng)點(diǎn)P在第一象限時(shí),求線(xiàn)段PM長(zhǎng)度的最大值;
(3)在拋物線(xiàn)上是否存在異于B、D的點(diǎn)Q,使△BDQ中BD邊上的高為?若存在求出點(diǎn)Q的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=4,BC=5,AC的長(zhǎng)是一元二次方程x2﹣15x+54=0的一個(gè)根.
(1)求AC的長(zhǎng);
(2)在A(yíng)C上找一點(diǎn)D,連接BD,使△ABD∽△ACB;
(3)以AC為一邊作一個(gè)三角形ACM,求出sin∠AMC的值.(所作三角形自己設(shè)計(jì))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com