【題目】如圖,已知ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1,l2l3上,且l1l2之間的距離為1,l2,l3之間的距離為2,則AC=____.

【答案】

【解析】

AADl3D,過CCEl3E,根據(jù)AAS證△DAB≌△EBC,求出BE=3,根據(jù)勾股定理求出AC

AADl3D,CCEl3E,則BF的長就是點BAC的距離.


ADl3,CEl3,
∴∠ADB=ABC=CEB=90°,
∴∠DAB+ABD=90°,ABD+CBE=90°
∴∠DAB=CBE,
在△DAB和△EBC
,
∴△DAB≌△EBCAAS),
AD=BE=2,
CE=2+1=3,
在△CEB,由勾股定理得BC===

在△ABC,由勾股定理得AC==.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校隨機抽取部分學生,就“學習習慣”進行調查,將“對自己做錯的題目進行整理、分析、改正” (選項為:很少、有時、常常、總是)的調查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:

請根據(jù)圖中信息,解答下列問題:

(1)該調查的樣本容量為_______,________ %,________%“很少”對應扇形的圓心角為_____________;

(2)請補全條形統(tǒng)計圖;

(3)若該校共有3500名學生,請你估計其中“總是”對錯題進行整理、分析、改正的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,∠A=∠C50°,線段AD上從左到右依次有兩點E、F(不與A、D重合)

1ABCD是什么位置關系,并說明理由;

2)觀察比較∠1、∠2、∠3的大小,并說明你的結論的正確性;

3)若∠FBD:∠CBD14,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度數(shù),判斷BEAD是何種位置關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ΔABC中,∠ABC與∠ACB的平分線交于點I,根據(jù)下列條件,求∠BIC的度數(shù)。

①若∠ABC40°,∠ACB60°,則∠BIC______°;

②若∠ABC+∠ACB100°,則∠BIC=___________°;

③若∠A80°,則∠BIC_______°;

④從上述計算中,我們能發(fā)現(xiàn)已知∠A=x,則∠BIC_______°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為提升硬件設施,決定采購80臺電腦,現(xiàn)有A,B兩種型號的電腦可供選擇.已知每臺A型電腦比B型的貴2000元,2臺A型電腦與3臺B型電腦共需24000元.

(1)分別求A,B兩種型號電腦的單價;

(2)若AB兩種型號電腦的采購總價不高于38萬元,則A型電腦最多采購多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,動點EF分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.

1)如圖1,當點E在邊DC上自DC移動,同時點F在邊CB上自CB移動時,連接AEDF交于點P,請你寫出AEDF的數(shù)量關系和位置關系,并說明理;

2)如圖2,當E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結論還成立嗎?(請你直接回答,不需證明);連接AC,求ACE為等腰三角形時CECD的值;

3)如圖3,當E,F分別在直線DC,CB上移動時,連接AEDF交于點P,由于點EF的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.AD=2,試求出線段CP的最大值.

1 2 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,四邊形OABC的頂點Ax軸上;∠COA=∠B=60°,且CB∥OA

1)求證,四邊形OABC是平行四邊形.

2)若A的坐標為(80),OC長為6,求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:如圖所示是每一個小方格都是邊長為1的正方形網格,

(1)利用網格線作圖:

①在上找一點P,使點P的距離相等;

②在射線上找一點Q,使.

(2)(1)中連接,試說明是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了幫助本市一名患白血病的高中生,某班15名同學積極捐款,他們捐款數(shù)額如下表:

捐款的數(shù)額(單位:元)

5

10

20

50

100

人數(shù)(單位:個)

2

4

5

3

1

關于這15名同學所捐款的數(shù)額,下列說法正確的是

A.眾數(shù)是100 B.平均數(shù)是30 C.極差是20 D.中位數(shù)是20

查看答案和解析>>

同步練習冊答案