【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù),的圖象和性質(zhì)進(jìn)行了探究過程如下,請(qǐng)補(bǔ)充完成:
(1)函數(shù)的自變量的取值范圍是__________________;
(2)下表是與的幾組對(duì)應(yīng)值.請(qǐng)直接寫出,的值:______________;________.
… | 0 | 2 | 3 | 4 | … | |||||||
… |
| -3 | 5 | 3 | … |
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)通過觀察函數(shù)的圖象,小明發(fā)現(xiàn)該函數(shù)圖象與反比例函數(shù)的圖象形狀相同,是中心對(duì)稱圖形,且點(diǎn)和是一組對(duì)稱點(diǎn),則其對(duì)稱中心的坐標(biāo)為________.
(5)請(qǐng)寫出一條該函數(shù)的性質(zhì):___________________.
(6)當(dāng)時(shí),關(guān)于的方程有實(shí)數(shù)解,求的取值范圍.
【答案】(1);(2),;(3)詳見解析;(4);(5)當(dāng) 時(shí),y隨x的增大而減。唬6).
【解析】
(1)根據(jù)分式的分母不能為0即可求出的取值范圍;
(2)令,即可求出m的值,令 ,即可求出n的值;
(3)將各個(gè)點(diǎn)用平滑的曲線連接即可得到函數(shù)的圖象;
(4)根據(jù)函數(shù)圖象即可得出答案;
(5)根據(jù)函數(shù)圖象可以得到函數(shù)的增減性;
(6)分別求出和時(shí)對(duì)應(yīng)的函數(shù)值,然后分別代入方程中,求出兩個(gè)k的值,即可確定k的取值范圍.
解:(1)
∴函數(shù)的自變量的取值范圍是.
故答案為:.
(2)時(shí),,
∴.
當(dāng)時(shí),則,解得,
∴,
故答案為:,;
(3)函數(shù)圖象如圖所示:
(4)由圖象可知,該函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,
故答案為:;
(5)當(dāng) 時(shí),y隨x的增大而減小 .
(6)當(dāng)時(shí), ;當(dāng)時(shí),,
把,代入函數(shù)得,,解得,
把,代入函數(shù)得,解得,
∴關(guān)于的方程有實(shí)數(shù)解,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線()與軸交于、兩點(diǎn)(在的右側(cè)),與軸的正半軸交于點(diǎn),對(duì)稱軸與軸交于點(diǎn),作直線.
(1)求點(diǎn)、、的坐標(biāo):
(2)當(dāng)以為圓心的圓與軸和直線都相切時(shí),求拋物線的解析式:
(3)在(2)的條件下,如圖2.是軸負(fù)半軸上的一點(diǎn),過點(diǎn)作軸的平行線,與直線交于點(diǎn),與拋物線交于點(diǎn),連接,將沿翻折,的對(duì)應(yīng)點(diǎn)為.在圖2中探究:是否存在點(diǎn),使得恰好落在軸上?若存在,請(qǐng)求出的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線過點(diǎn),過定點(diǎn) 的直線:與拋物線交于、兩點(diǎn),點(diǎn)在點(diǎn)的右側(cè),過點(diǎn)作軸的垂線,垂足為.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)在x軸上運(yùn)動(dòng),連接,作的垂直平分線與過點(diǎn)D作x軸的垂線交于點(diǎn),判斷點(diǎn)是否在拋物線上,并證明你的判斷;
(3)若,設(shè)的中點(diǎn)為,拋物線上是否存在點(diǎn),使得周長最小,若存在求出周長的最小值,若不存在說明理由;
(4)若,在拋物線上是否存在點(diǎn),使得的面積為,若存在求出點(diǎn)的坐標(biāo),若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn),拋物線與軸相交于、兩點(diǎn),與軸交于點(diǎn),;
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)在第四象限的拋物線上,連接交軸于點(diǎn),軸于點(diǎn),的延長線交直線于點(diǎn),求證:;
(3)如圖3,在(2)的條件下,點(diǎn)在上,連接、,,,求的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)第一次購進(jìn)20件A商品,40件B商品,共用了1980元.脫銷后,在進(jìn)價(jià)不變的情況下,第二次購進(jìn)40件A商品,20件B商品,共用了1560元.商品A的售價(jià)為每件30元,商品B的售價(jià)為每件60元.
(1)求A,B兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)為了滿足市場(chǎng)需求,需購進(jìn)A,B兩種商品共1000件,且A種商品的數(shù)量不少于B種商品數(shù)量的3倍,請(qǐng)你設(shè)計(jì)進(jìn)貨方案,使這1000件商品售完后,商場(chǎng)獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=4,BC=3,如圖1,四邊形DEFG為△ABC的內(nèi)接正方形,則正方形DEFG的邊長為_____.如圖2,若三角形ABC內(nèi)有并排的n個(gè)全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市某段地鐵工程由甲、乙兩工程隊(duì)合作天可完成.若單獨(dú)施工,甲工程隊(duì)比乙工程隊(duì)多用天.
求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?
如果甲工程隊(duì)施工每天需付施工費(fèi)萬元,乙工程隊(duì)施工每天需付施工費(fèi)萬元,甲工程隊(duì)最多要單獨(dú)施工多少天后,再由甲.乙兩工程隊(duì)合作施工完成剩下的工程,才能使施工費(fèi)不超過萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉.經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.
(1)直接寫出當(dāng)和時(shí),與的函數(shù)關(guān)系式;
(2)廣場(chǎng)上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費(fèi)用最少?最少總費(fèi)用為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com