【題目】如圖,直線y=﹣x+b分別與x軸、y軸交于A,B兩點,點A的坐標(biāo)為(3,0),過點B的另一條直線交x軸負(fù)半軸于點C,且OB:OC=3:1.

(1)求點B的坐標(biāo)及直線BC對應(yīng)的函數(shù)表達(dá)式;

(2)在線段OB上存在點P,使得點P到點B,C的距離相等,試求出點P的坐標(biāo);

(3)如果在x軸上方存在點D,使得以點A,B,D為頂點的三角形與△ABC全等,請直接寫出點D的坐標(biāo).

【答案】(1)B(0,3),y=3x+3;(2)P的坐標(biāo)(0,);(3)(4,3)或(3,4).

【解析】

1)先把A點坐標(biāo)代入y=-x+b可計算出b=3,即可得到C點坐標(biāo),進而得出直線BC的解析式;

2)設(shè)PB=PC=x,根據(jù)勾股定理解答即可;

3)點A,BD為頂點的三角形與△ABC全等,利用長度公式得出點D的坐標(biāo).

解:(1)把A 3,0)代入y=﹣x+b,得 b3,

B0,3),

OB3,

OBOC31,

OC1,

∵點Cx軸負(fù)半軸上,

C(﹣1,0),

設(shè)直線BC的解析式為ymx+n,

B03)及C(﹣1,0)代入,得,

解得

∴直線BC的解析式為:y3x+3

2)由題意,PBPC,

設(shè)PBPCx,則OP3x,

RtPOC中,∠POC90°,

,

解得,x

OP3x,

∴點P的坐標(biāo)(0,);

3)①如圖,當(dāng)點Dy軸右側(cè)時,

AB,D為頂點的三角形與△ABC全等,則四邊形BDAC為平行四邊形,

BDAC1+34,則點D4,3),

②當(dāng)點Dy軸左側(cè)時,

SABDSABD,則點D、DAB的距離相等,

則直線DDAB,

設(shè):直線DD的表達(dá)式為:y=﹣x+n

將點D的坐標(biāo)代入上式并解得:n7,

直線DD的表達(dá)式為:y=﹣x+7

設(shè)點Dn,7n),

A,BD為頂點的三角形與△ABC全等,

BDBC

n=3n=1

又∵ADAC

n=3n=7

n3,

故點D3,4);

綜上所述,符合條件的點D的坐標(biāo)是:(4,3)或(34).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一些完全相同的正三角形按如圖所示規(guī)律擺放,第一個圖形有1個正三角形,第二個圖形有5個正三角形,第三個圖形有12個正三角形,,按此規(guī)律排列下去,第六個圖形中正三角形的個數(shù)是(  )

A. 35 B. 41 C. 45 D. 51

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,若分得的兩個小三角形中一個三角形為等腰三角形,另一個三角形的三個內(nèi)角與原來三角形的三個內(nèi)角分別相等,則稱這條線段叫做這個三角形的等角分割線

例如,等腰直角三角形斜邊上的高就是這個等腰直角三角形的一條等角分割線

(1)如圖1,在△ABC中,D是邊BC上一點,若∠B=30°,∠BAD=∠C=40°,求證: AD△ABC等角分割線;

(2)如圖2,△ABC中,∠C=90°,∠B=30°;

畫出△ABC等角分割線,寫出畫法并說明理由;

BC=3,求出中畫出的等角分割線的長度.

(3)△ABC中,∠A=24°,若△ABC存在等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩家超市同時采取通過搖獎返現(xiàn)金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進行了統(tǒng)計并制成了圖表(如圖)

獎金金額

獲獎人數(shù)

20

15

10

5

商家甲超市

5

10

15

20

乙超市

2

3

20

25

(1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是   ,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)是   ;

(2)請你補全統(tǒng)計圖1;

(3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?

(4)圖2是甲超市的搖獎轉(zhuǎn)盤,黃區(qū)20元、紅區(qū)15元、藍(lán)區(qū)10元、白區(qū)5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過A(2,0). 設(shè)頂點為點P,與x軸的另一交點為點B.

(1)求b的值,求出點P、點B的坐標(biāo);

(2)如圖,在直線 上是否存在點D,使四邊形OPBD為平行四邊形?若存在,求出點D的坐

標(biāo);若不存在,請說明理由;

(3)在x軸下方的拋物線上是否存在點M,使AMP≌△AMB?如果存在試舉例驗證你的猜想;如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小東從A地出發(fā)以某一速度向B地走去,同時小明從B地出發(fā)以另一速度向A地走去,y1,y2分別表示小東、小明離B地的距離y(km)與所用時間x(h)的關(guān)系,如圖所示,根據(jù)圖象提供的信息,回答下列問題:

(1)試用文字說明交點P所表示的實際意義;

(2)y1x的函數(shù)關(guān)系式;

(3)A,B兩地之間的距離及小明到達(dá)A地所需的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,∠ABC和∠ACB的角平分線相交于點P,且PEABPFAC,垂足分別為EF

1)求證:PE=PF;

2)若∠BAC=60°,連接AP,求∠EAP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,的平分線與的垂直平分線交于點,將沿(上,)折疊,點與點恰好重合,則____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=(t+1)x2+2(t+2)x+x=0x=2時的函數(shù)值相等

(1)求二次函數(shù)的解析式,并作圖象;

(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的象都經(jīng)過點A(3,m),求mk的值.

查看答案和解析>>

同步練習(xí)冊答案