【題目】為了優(yōu)化環(huán)境,將對(duì)某一小區(qū)環(huán)境進(jìn)行綠化,現(xiàn)有甲、乙兩家綠化公司進(jìn)行了投標(biāo),各自推出了綠化收費(fèi)方案如下:甲公司綠化費(fèi)用(元) 與綠化面積(平方米)是一次函數(shù)關(guān)系,如圖所示。

乙公司:綠化面積不超過(guò)1000平方米時(shí),統(tǒng)一收取費(fèi)用5000元;綠化面積超過(guò)1000平方米時(shí),超過(guò)部分每平方米收取3元.

1)求甲、乙公司綠化費(fèi)用(元)與綠化面積(平方米)的函數(shù)表達(dá)式;

2)如果該小區(qū)目前的綠化面積是1500平方米,試通過(guò)計(jì)算說(shuō)明:選擇哪家公司的綠化費(fèi)用較少?

【答案】1)甲公司y關(guān)于x的函數(shù)表達(dá)式為y=5x+500;乙公司關(guān)于x的函數(shù)表達(dá)式為y=;(2)選擇乙公司綠化費(fèi)用較少.

【解析】

1)待定系數(shù)法即可求出甲公司函數(shù)式,分段函數(shù)表示乙公司函數(shù)表達(dá)式;

2)將x=1500代入兩函數(shù)式即可解答.

解:(1)設(shè)甲公司y關(guān)于x的函數(shù)表達(dá)式為y=kx+bk≠0),

函數(shù)圖像經(jīng)過(guò)(0,500),(100,1000

k=5,b=500,

∴甲公司y關(guān)于x的函數(shù)表達(dá)式為y=5x+500;

y=50000x≤1000);

y=3(x1000)+5000,即y=3x+2000x1000);

∴乙公司y關(guān)于x的函數(shù)表達(dá)式為y=;

2)當(dāng)x=1500時(shí),y=5x+500=8000(元),

當(dāng)x=1500時(shí),y=3x+2000=6500(元),

80006500,

∴選擇乙公司綠化費(fèi)用較少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某自行車(chē)經(jīng)營(yíng)店銷(xiāo)售型,型兩種品牌自行車(chē),今年進(jìn)貨和銷(xiāo)售價(jià)格如下表:(今年1年內(nèi)自行車(chē)的售價(jià)與進(jìn)價(jià)保持不變)

型車(chē)

型車(chē)

進(jìn)貨價(jià)格(/)

1000

1100

銷(xiāo)售價(jià)格(/)

1500

今年經(jīng)過(guò)改造升級(jí)后,型車(chē)每輛銷(xiāo)售價(jià)比去年增加400元.已知型車(chē)去年1月份銷(xiāo)售總額為3.6萬(wàn)元,今年1月份型車(chē)的銷(xiāo)售數(shù)量與去年1月份相同,而銷(xiāo)售總額比去年1月份增加

1)若設(shè)今年1月份的型自行車(chē)售價(jià)為/輛,求的值?(用列方程的方法解答)

2)該店計(jì)劃8月份再進(jìn)一批型和型自行車(chē)共50輛,且型車(chē)數(shù)量不超過(guò)型車(chē)數(shù)量的2倍,應(yīng)如何進(jìn)貨才能使這批自行車(chē)獲利最多?

3)該店為吸引客源,準(zhǔn)備增購(gòu)一種進(jìn)價(jià)為500元的型車(chē),預(yù)算用8萬(wàn)元購(gòu)進(jìn)這三種車(chē)若干輛,其中型與型的數(shù)量之比為,則該店至少可以購(gòu)進(jìn)三種車(chē)共多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線(xiàn)學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類(lèi)在線(xiàn)學(xué)習(xí)方式:在線(xiàn)閱讀、在線(xiàn)聽(tīng)課、在線(xiàn)答題和在線(xiàn)討論.為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了你對(duì)哪類(lèi)在線(xiàn)學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)圖中信息,解答下列問(wèn)題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中在線(xiàn)討論對(duì)應(yīng)的扇形圓心角的度數(shù);

3)該校共有學(xué)生人,請(qǐng)你估計(jì)該校對(duì)在線(xiàn)閱讀最感興趣的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在正方形ABCD中,對(duì)角線(xiàn)ACBD相交于點(diǎn)O,AEDF分別是∠OAD與∠ODC的平分線(xiàn),AE的延長(zhǎng)線(xiàn)與DF相交于點(diǎn)G,則下列結(jié)論:AGDF;EFAB;ABAF;AB2EF.其中正確的結(jié)論是( 。

A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,E,F分別在邊ADCD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù),是常數(shù),)的自變量x與函數(shù)值y的部分對(duì)應(yīng)值如下表:

-1

0

1

3

3

3

且當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.有下列結(jié)論:①;②3是關(guān)于的方程的一個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是(

A.0B.1C.2/span>D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,折線(xiàn)中,,,將折線(xiàn)繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn),得到折線(xiàn),點(diǎn)的對(duì)應(yīng)點(diǎn)落在線(xiàn)段上的點(diǎn)處,點(diǎn)的對(duì)應(yīng)點(diǎn)落在點(diǎn)處,連接,若,則_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案